Skip to main content

Advertisement

Log in

Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Drugs are frequently tested for retinal toxicity in animal models in order to address applied and basic research questions. When a retinal toxicity study is designed, the researcher needs to consider several factors depending on his/her research questions. Among the factors that need to be addressed before a toxicity study is conducted are: the animal species to be used, choice of experimental (functional and/or morphological) techniques, procedure of testing, period of follow-up, and modes of data analysis. This review is a summary of 20 years’ experience of studying retinal toxicity of different drugs in rabbits and rats. The use of the electroretinogram and the visual evoked potential for assessment of outer and inner retinal function, respectively, is described as well as the use of morphological techniques (histology, histochemistry, and immunocytochemistry). The advantages and limitations of functional and morphological techniques are discussed with specific examples from my experience. Recommendations for future drug toxicity studies are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Loewenstein A, Zemel E, Lazar M, Perlman I (1991) The effects of depo-medrol preservative (MGP) on the rabbit visual system. Invest Ophthalmol Vis Sci 32:3053–3060

    CAS  PubMed  Google Scholar 

  2. Zemel E, Loewenstein A, Lazar M, Perlman I (1993) The effects of myristyl γ-picolinium chloride on the rabbit retina: morphologic observations. Invest Ophthalmol Vis Sci 34:2360–2366

    CAS  PubMed  Google Scholar 

  3. Lai TY, Ngai JW, Chan WM, Lam DS (2006) Visual field and multifocal electroretinography and their correlation in patients on hydroxychloroquine therapy. Doc Ophthalmol 112:177–187. doi:10.1007/s10633-006-9006-0

    Article  PubMed  Google Scholar 

  4. Tzekov R (2005) Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol 110:111–120. doi:10.1007/s10633-005-7349-6

    Article  PubMed  Google Scholar 

  5. Ivanina TA, Zueva MV, Lebedeva MN, Bogoslovsky AI, Bunin AJ (1983) Ultrastructural alterations in rat and cat retina and pigment epithelium induced by chloroquine. Graefes Arch Clin Exp Ophthalmol 220:32–38. doi:10.1007/BF02307013

    Article  CAS  PubMed  Google Scholar 

  6. Harding GF, Robertson K, Spencer EL, Holliday I (2002) Vigabatrin: its effects on the electrophysiology of vision. Doc Ophthalmol 104:213–229. doi:10.1023/A:1014643528474

    Article  CAS  PubMed  Google Scholar 

  7. Sankar R, Wasterlain CG (1999) Is the devil we know the lesser of two evils? Vigabatrin and visual fields. Neurology 52:1537–1538

    CAS  PubMed  Google Scholar 

  8. Butler WH, Ford GP, Newberne JW (1987) A study on the effects of vigabatrin on the central nervous system and retina of Sprague Dawley and Lister-Hooded rats. Toxicol Pathol 15:143–148

    CAS  PubMed  Google Scholar 

  9. Kjellström U, Kjelleström S, Bruum A, Andreasson S, Ponjavic V (2006) Retinal function in rabbits does not improve 4–5 months after terminating treatment with vigabatrin. Doc Ophthalmol 112:35–41. doi:10.1007/s10633-006-0004-z

    Article  PubMed  Google Scholar 

  10. Tano Y, Chandler DB, Machemer R (1980) Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide. Am J Ophthalmol 90:810–816

    CAS  PubMed  Google Scholar 

  11. Martidis A, Duker JS, Greenberg PB, Rogers AH, Puliafito CA, Reichel E, Baumal C (2002) Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology 109:920–927

    Article  PubMed  Google Scholar 

  12. Danis RP, Ciulla TA, Pratt LM, Anliker W (2000) Intravitreal triamcinolone acetonide in exudative age-related macular degeneration. Retina 20:244–250. doi:10.1097/00006982-200005000-00003

    Article  CAS  PubMed  Google Scholar 

  13. Bashshur ZF, Haddad ZA, Schakal A, Jaafar RF, Saab M, Noureddin BN (2008) Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: a one-year prospective study. Am J Ophthalmol 145:249–256. doi:10.1016/j.ajo.2007.09.031

    Article  CAS  PubMed  Google Scholar 

  14. Rosenfeld PJ, Moshfeghi AA, Puliafito CA (2005) Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthal Surg Laser Imaging 36:331–335

    Google Scholar 

  15. Armington JC (1974) The electroretinogram. Academic Press, New York

    Google Scholar 

  16. Berson EL (1981) Electrical phenomena in the retina. In: Moses RA (ed) Adler’s physiology of the eye. Mosby, St. Louis, pp 466–529

    Google Scholar 

  17. Granit R (1933) The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol 77:207–239

    CAS  PubMed  Google Scholar 

  18. Ripps H, Witkovsky P (1985) Neuron-glia interaction in the brain and retina. In: Osborne NN, Chader GJ (eds) Prog. Retinal Res. Pergamon, Oxford, pp 181–219

    Google Scholar 

  19. Green DG, Kapousta-Bruneau NV (1999) A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Vis Neurosci 16:727–741. doi:10.1017/S0952523899164125

    Article  CAS  PubMed  Google Scholar 

  20. Lei B, Perlman I (1999) The contribution of voltage- and time-dependent potassium conductances to the electroretinogram in rabbits. Vis Neurosci 16:743–754. doi:10.1017/S0952523899164137

    Article  CAS  PubMed  Google Scholar 

  21. Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850

    Article  CAS  PubMed  Google Scholar 

  22. Stockton A, Slaughter MM (1989) B-wave of the electroretinogram. A reflection of ON-bipolar cell activity. J Gen Physiol 93:101–122. doi:10.1085/jgp.93.1.101

    Article  CAS  PubMed  Google Scholar 

  23. Heynen H, Wachtmeister L, van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25:1365–1373. doi:10.1016/0042-6989(85)90214-7

    Article  CAS  PubMed  Google Scholar 

  24. Speros P, Prise J (1981) Oscillatory potentials: history, techniques and potential use in the evaluation of disturbances of retinal circulation. Surv Ophthalmol 25:237–252. doi:10.1016/0039-6257(81)90093-X

    Article  CAS  PubMed  Google Scholar 

  25. Wachtmeister L (1987) Basic research and clinical aspects of the oscillatory potentials of the electroretinogram. Doc Ophthalmol 66:187–194. doi:10.1007/BF00145232

    Article  CAS  PubMed  Google Scholar 

  26. Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532

    CAS  PubMed  Google Scholar 

  27. Ueno S, Kondo M, Ueno M, Miyata K, Terasaki H, Miyake Y (2006) Contribution of retinal neurons to d-wave of primate photopic electroretinogram. Vision Res 46:658–664. doi:10.1016/j.visres.2005.05.026

    Article  PubMed  Google Scholar 

  28. Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. In: Osborne NN, Chader GJ (eds) Prog. Retinal Eye Res. Elsevier, Amsterdam, pp 531–561

    Google Scholar 

  29. Ben-Shlomo G, Bakalash S, Lambrou GN, Latour E, Dawson WW, Schwartz M, Ofri R (2005) Pattern electroretinography in a rat model of ocular hypertension: functional evidence for early detection of inner retinal damage. Exp Eye Res 81:340–349

    CAS  PubMed  Google Scholar 

  30. Feghali JG, Jin J-C, Odom JV (1991) Effects of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32:2184–2189

    CAS  PubMed  Google Scholar 

  31. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522

    CAS  PubMed  Google Scholar 

  32. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith ELIII (1999) The photopic negative response of the macaque electroretinogram: Reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    CAS  PubMed  Google Scholar 

  33. Li B, Barnes GE, Holt WF (2005) The decline of the photopic negative response (PhNR) in the rat after optic nerve transection. Doc Ophthalmol 111:23–31. doi:10.1007/s10633-005-2629-8

    Article  CAS  PubMed  Google Scholar 

  34. Mojumder DK, Sherry DM, Frishman LJ (2008) Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. J Physiol 586:2551–2580. doi:10.1113/jphysiol.2008.150755

    Article  CAS  PubMed  Google Scholar 

  35. Fulton AB, Hansen RM (1988) Scotopic stimulus/response relations of the b-wave of the electroretinogram. Doc Ophthalmol 68:193–304. doi:10.1007/BF00156435

    Article  Google Scholar 

  36. Fulton AB, Rushton WAH (1978) The human rod ERG: correlationship with psychophysical responses in light and dark adaptation. Vision Res 18:793–800. doi:10.1016/0042-6989(78)90119-0

    Article  CAS  PubMed  Google Scholar 

  37. Hood DC, Birch DG (1992) A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci 8:107–126

    CAS  PubMed  Google Scholar 

  38. Cone RA (1963) Quantum relations of the rat electroretinogram. J Gen Physiol 46:1267–1286. doi:10.1085/jgp.46.6.1267

    Article  CAS  PubMed  Google Scholar 

  39. Perlman I (1983) Relationship between the amplitudes of the b wave and the a wave as a useful index for evaluating the electroretinogram. Br J Ophthalmol 67:443–448. doi:10.1136/bjo.67.7.443

    Article  CAS  PubMed  Google Scholar 

  40. Loewenstein A, Zemel E, Lazar M, Perlman I (1993) Drug-induced retinal toxicity in albino rabbits: effects of imipenem and aztreonam. Invest Ophthalmol Vis Sci 34:3466–3476

    CAS  PubMed  Google Scholar 

  41. Bignami A, Dahl D (1979) The radial glia of Müller in the rat retina and their response to injury: an immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Exp Eye Res 28:63–69. doi:10.1016/0014-4835(79)90106-4

    Article  CAS  PubMed  Google Scholar 

  42. Li Q, Zemel E, Miller B, Perlman I (2002) Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 74:615–625. doi:10.1006/exer.2002.1170

    Article  CAS  PubMed  Google Scholar 

  43. Miller NM, Oberdorfer M (1981) Neuronal and neuroglial responses following retinal lesions in the neonatal rat. J Comp Neurol 202:493–504. doi:10.1002/cne.902020404

    Article  CAS  PubMed  Google Scholar 

  44. Penn JS, Thum KA, Rhem MN, Dell SJ (1988) Effects of oxygen rearing on the electroretinogram and GFA-protein in the rat. Invest Ophthalmol Vis Sci 29:1623–1630

    CAS  PubMed  Google Scholar 

  45. Tassignon M-J, Stempels N, Nguyen-Legros J, De Wilde F, Brihaye M (1991) The effects of wavelength on glial fibrillary acidic protein immunoreactivity in laser-induced lesions in rabbit retina. Graefes Arch Clin Exp Ophthalmol 229:380–388. doi:10.1007/BF00170698

    Article  CAS  PubMed  Google Scholar 

  46. Ekstrom P, Sanyal S, Narfstrom K, Chader GJ, van Veen T (1988) Accumulation of glial fibrillary acidic protein in Müller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 29:1363–1371

    CAS  PubMed  Google Scholar 

  47. Knowles RG, Palacois M, Palmer RM, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of soluble guanylate cyclase. Proc Natl Acad Sci USA 86:5159–5162. doi:10.1073/pnas.86.13.5159

    Article  CAS  PubMed  Google Scholar 

  48. Oku H, Yamaguchi H, Sugiyama T, Kojima S, Ota M, Azuma I (1997) Retinal toxicity of nitric oxide released by administration of a nitric oxide donor in the albino rabbit. Invest Ophthalmol Vis Sci 38:2540–2544

    CAS  PubMed  Google Scholar 

  49. Sennlaub F, Courtois Y, Goureay O (2002) Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy. J Neurosci 22:3987–3993

    CAS  PubMed  Google Scholar 

  50. Barza M, McCue M (1983) Pharmacokinetics of aztreonam in rabbit eyes. Antimicrob Agents Chemother 24:468–473

    CAS  PubMed  Google Scholar 

  51. Bui BV, Sinclair AJ, Vingrys AJ (1998) Electroretinograms of albino and pigmented guinea-pigs (Cavia porcellus). Aust N Z J Ophthalmol 26:S98–S100. doi:10.1111/j.1442-9071.1998.tb01388.x

    Article  PubMed  Google Scholar 

  52. Green DG, Herreros de Tejada P, Glover MJ (1991) Are albino rats night blind? Invest Ophthalmol Vis Sci 32:2366–2371

    CAS  PubMed  Google Scholar 

  53. Zemel E, Loewenstein A, Lei B, Lazar M, Perlman I (1995) Ocular pigmentation protects the rabbit retina from gentamicin-induced toxicity. Invest Ophthalmol Vis Sci 36:1875–1884

    CAS  PubMed  Google Scholar 

  54. Barza M, Baum J, Kane A (1976) Inhibition of antibiotic activity in vitro by synthetic melanin. Antimicrob Agents Chemother 10:569–570

    CAS  PubMed  Google Scholar 

  55. Zemel E, Loewenstein A, Lazar M, Perlman I (1995) The effects of lidocaine and bupivacaine on the rabbit retina. Doc Ophthalmol 90:189–199. doi:10.1007/BF01203338

    Article  CAS  PubMed  Google Scholar 

  56. Chin GN, Almquist HT (1983) Bupivacaine and lidocaine retrobulbar anesthesia. A double blind clinical study. Ophthalmology 90:369–372

    CAS  PubMed  Google Scholar 

  57. Loewenstein A, Zemel E, Vered Y, Lazar M, Perlman I (2001) Retinal toxicity of gentamicin after subconjunctival injection performed adjacent to thinned sclera. Ophthalmology 108:759–764

    Article  CAS  PubMed  Google Scholar 

  58. Goldstein M, Zemel E, Loewenstein A, Perlman I (2006) Retinal toxicity of indocyanine green in albino rabbits. Invest Ophthalmol Vis Sci 47:2100–2107. doi:10.1167/iovs.05-0206

    Article  PubMed  Google Scholar 

  59. Burk SE, Da Mata AP, Snyder ME, Rosa RHJ, Foster RE (2000) Indocyanine green-assisted peeling of the retinal internal limiting membrane. Ophthalmology 107:2010–2014

    Article  CAS  PubMed  Google Scholar 

  60. Eshita T, Ishida S, Shinoda K, Kitamura S, Inoue M, Oguchi Y, Yamazaki K (2002) Indocyanine green can distinguish posterior vitreous cortex from internal limiting membrane during vitrectomy with removal of epiretinal membrane. Retina 22:104–106. doi:10.1097/00006982-200202000-00018

    Article  PubMed  Google Scholar 

  61. Kwok AK, Li WW, Pang CP, Lai TY, Yam GH, Chan NR, Lam DS (2001) Indocyanine green staining and removal of internal limiting membrane in macular hole surgery: histology and outcome. Am J Ophthalmol 132:178–183. doi:10.1016/S0002-9394(01)00976-X

    Article  CAS  PubMed  Google Scholar 

  62. Lang Y, Zemel E, Miller B, Perlman I (2007) Retinal toxicity of intravitreal Kenalog in albino rabbits. Retina 27:778–788. doi:10.1097/IAE.0b013e318030c517

    Article  PubMed  Google Scholar 

  63. Lang Y, Leibu R, Shoham N, Miller B, Perlman I (2007) Evaluation of intravitreal Kenalog toxicity in humans. Ophthalmology 114:724–731

    Article  PubMed  Google Scholar 

  64. Izumi Y, Ishikawa M, Benz AM, Izumi M, Zorumski CF, Thio LL (2004) Acute vigabatrin retinotoxicity in albino rats depends on light but not GABA. Epilepsia 45:1043–1048. doi:10.1111/j.0013-9580.2004.01004.x

    Article  CAS  PubMed  Google Scholar 

  65. Frishman LJ, Saszik S, Harwerth RS, Viswanathan S, Li Y, Smith EL III, Robson JG, Barnes G (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol 100:231–251. doi:10.1023/A:1002735804029

    Article  CAS  Google Scholar 

  66. Seeliger MW, Narfström K, Reinhardt J, Zrenner E, Sutter E (2000) Continuous monitoring of the stimulated area in multifocal ERG. Doc Ophthalmol 100:167–184. doi:10.1023/A:1002731703120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to all the researchers and the ophthalmologists (residents and senior) who collaborated with me in retinal research over the past 25 years. Their help and support have been essential to the discoveries in my laboratory. I would like to thank specifically Dr. Esther Zemel, who has been my right-hand help in retinal research and in all the drug toxicity studies of my laboratory, and to Ms. Irit Man whose help in the histological work was crucial. Special thanks to Prof. Anat Loewenstein who presented me with the first drug toxicity study, and has participated actively in many of the studies discussed in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Perlman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlman, I. Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc Ophthalmol 118, 3–28 (2009). https://doi.org/10.1007/s10633-008-9153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-008-9153-6

Keywords

Navigation