Skip to main content

Advertisement

Log in

Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Detection of visual field progression remains a challenging task despite the recent advances for better handling of longitudinal visual field data, some of which are incorporated in currently available perimeters. Standard achromatic perimetry remains the gold standard for detection of visual field progression. The authors present a practical and clinically relevant review of the main issues involved in detection of early glaucoma as well as detection of visual field progression in eyes with pre-existing glaucomatous damage. After discussing some basic concepts in perimetry, the authors present evidence-based recommendations for criteria to detect earliest evidence of glaucomatous damage with perimetry. The authors will review different event- and trend-based criteria and present data with regard to comparative performance of such criteria. Relevance of using absolute versus corrected threshold data with regard to different criteria is also addressed. At the end, the authors provide practical guidelines for detection of visual field progression in a clinical setting and review issues related to clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720, discussion 829–730

    PubMed  Google Scholar 

  2. Leske MC, Wu SY, Hyman L, Nemesure B, Hennis A, Schachat AP (2004) Four-year incidence of visual impairment: Barbados Incidence Study of Eye Diseases. Ophthalmology 111:118–124

    Article  PubMed  Google Scholar 

  3. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML (1999) Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40:2242–2250

    PubMed  CAS  Google Scholar 

  4. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA (2000) Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci 41:1774–1782

    PubMed  CAS  Google Scholar 

  5. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    PubMed  CAS  Google Scholar 

  6. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748

    PubMed  CAS  Google Scholar 

  7. Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML (2004) Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 45:3152–3160

    Article  PubMed  Google Scholar 

  8. Flammer J, Drance SM, Fankhauser F, Augustiny L (1984) Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation. Arch Ophthalmol 102:876–879

    PubMed  CAS  Google Scholar 

  9. Chauhan BC, LeBlanc RP, Drance SM, Wijsman K, Cruz AM (1991) Effect of the number of threshold determinations on short-term fluctuation in automated perimetry. Ophthalmology 98:1420–1424

    PubMed  CAS  Google Scholar 

  10. Heijl A, Lindgren A, Lindgren G (1989) Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 108:130–135

    PubMed  CAS  Google Scholar 

  11. Boeglin RJ, Caprioli J, Zulauf M (1992) Long-term fluctuation of the visual field in glaucoma. Am J Ophthalmol 113:396–400

    PubMed  CAS  Google Scholar 

  12. Weber J, Rau S (1992) The properties of perimetric thresholds in normal and glaucomatous eyes. Ger J Ophthalmol 1:79–85

    PubMed  CAS  Google Scholar 

  13. Fogagnolo P, Sangermani C, Oddone F, Frezzotti P, Iester M, Figus M, Ferreras A, Romano S, Gandolfi S, Centofanti M, Rossetti L, Orzalesi N (2011) Long-term perimetric fluctuation in patients with different stages of glaucoma. Br J Ophthalmol 95:189–193

    Article  PubMed  Google Scholar 

  14. Wall M, Kutzko KE, Chauhan BC (1997) Variability in patients with glaucomatous visual field damage is reduced using size V stimuli. Invest Ophthalmol Vis Sci 38:426–435

    PubMed  CAS  Google Scholar 

  15. Spry PG, Johnson CA, McKendrick AM, Turpin A (2001) Variability components of standard automated perimetry and frequency-doubling technology perimetry. Invest Ophthalmol Vis Sci 42:1404–1410

    PubMed  CAS  Google Scholar 

  16. Chauhan BC, Tompkins JD, LeBlanc RP, McCormick TA (1993) Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients with glaucoma. Invest Ophthalmol Vis Sci 34:3534–3540

    PubMed  CAS  Google Scholar 

  17. Henson DB, Chaudry S, Artes PH, Faragher EB, Ansons A (2000) Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci 41:417–421

    PubMed  CAS  Google Scholar 

  18. Spry PG, Henson DB, Sparrow JM, North RV (2000) Quantitative comparison of static perimetric strategies in early glaucoma: test-retest variability. J Glaucoma 9:247–253

    PubMed  CAS  Google Scholar 

  19. Gardiner SK, Crabb DP (2002) Examination of different pointwise linear regression methods for determining visual field progression. Invest Ophthalmol Vis Sci 43:1400–1407

    PubMed  Google Scholar 

  20. Chauhan BC, Garway-Heath DF, Goni FJ, Rossetti L, Bengtsson B, Viswanathan AC, Heijl A (2008) Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol 92:569–573

    Article  PubMed  CAS  Google Scholar 

  21. Blumenthal EZ, Sample PA, Berry CC, Lee AC, Girkin CA, Zangwill L, Caprioli J, Weinreb RN (2003) Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals. Ophthalmology 110:1895–1902

    Article  PubMed  Google Scholar 

  22. Maddess T (2011) The influence of sampling errors on test-retest variability in perimetry. Invest Ophthalmol Vis Sci 52:1014–1022

    Article  PubMed  Google Scholar 

  23. Asman P, Heijl A (1992) Glaucoma Hemifield Test. Automated visual field evaluation. Arch Ophthalmol 110:812–819

    PubMed  CAS  Google Scholar 

  24. Asman P, Heijl A (1993) Arcuate cluster analysis in glaucoma perimetry. J Glaucoma 2:13–20

    Article  PubMed  CAS  Google Scholar 

  25. Hodapp E, Parrish RK II, Anderson DR (1993) Clinical decisions in glaucoma. Mosby, St. Louis

    Google Scholar 

  26. Johnson CA, Sample PA, Cioffi GA, Liebmann JR, Weinreb RN (2002) Structure and function evaluation (SAFE): I. criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP). Am J Ophthalmol 134:177–185

    Article  PubMed  Google Scholar 

  27. Sample PA, Medeiros FA, Racette L, Pascual JP, Boden C, Zangwill LM, Bowd C, Weinreb RN (2006) Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 47:3381–3389

    Article  PubMed  Google Scholar 

  28. Keltner JL, Johnson CA, Quigg JM, Cello KE, Kass MA, Gordon MO (2000) Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study. Ocular Hypertension Treatment Study Group. Arch Ophthalmol 118:1187–1194

    PubMed  CAS  Google Scholar 

  29. Artes PH, Chauhan BC, Keltner JL, Cello KE, Johnson CA, Anderson DR, Gordon MO, Kass MA (2010) Longitudinal and cross-sectional analyses of visual field progression in participants of the Ocular Hypertension Treatment Study. Arch Ophthalmol 128:1528–1532

    Article  PubMed  Google Scholar 

  30. Hart WM Jr, Becker B (1982) The onset and evolution of glaucomatous visual field defects. Ophthalmology 89:268–279

    PubMed  Google Scholar 

  31. Mikelberg FS, Drance SM (1984) The mode of progression of visual field defects in glaucoma. Am J Ophthalmol 98:443–445

    Article  PubMed  CAS  Google Scholar 

  32. Boden C, Blumenthal EZ, Pascual J, McEwan G, Weinreb RN, Medeiros F, Sample PA (2004) Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol 138:1029–1036

    Article  PubMed  Google Scholar 

  33. Nevalainen J, Paetzold J, Papageorgiou E, Sample PA, Pascual JP, Krapp E, Selig B, Vonthein R, Schiefer U (2009) Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements. Graefes Arch Clin Exp Ophthalmol 247:1659–1669

    Article  PubMed  Google Scholar 

  34. Anderson DR, Chauhan B, Johnson C, Katz J, Patella VM, Drance SM (2000) Criteria for progression of glaucoma in clinical management and in outcome studies. Am J Ophthalmol 130:827–829

    Article  PubMed  CAS  Google Scholar 

  35. Lee AC, Sample PA, Blumenthal EZ, Berry C, Zangwill L, Weinreb RN (2002) Infrequent confirmation of visual field progression. Ophthalmology 109:1059–1065

    Article  PubMed  Google Scholar 

  36. Gardiner SK, Crabb DP (2002) Frequency of testing for detecting visual field progression. Br J Ophthalmol 86:560–564

    Article  PubMed  CAS  Google Scholar 

  37. Schulzer M (1994) Errors in the diagnosis of visual field progression in normal-tension glaucoma. Ophthalmology 101:1589–1594, discussion 1595

    PubMed  CAS  Google Scholar 

  38. Heijl A, Leske MC, Bengtsson B, Hussein M (2003) Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 81:286–293

    Article  PubMed  Google Scholar 

  39. Jansonius NM (2005) Bayes' theorem applied to perimetric progression detection in glaucoma: from specificity to positive predictive value. Graefes Arch Clin Exp Ophthalmol 243:433–437

    Article  PubMed  Google Scholar 

  40. Wesselink C, Heeg GP, Jansonius NM (2009) Glaucoma monitoring in a clinical setting: glaucoma progression analysis vs nonparametric progression analysis in the Groningen Longitudinal Glaucoma Study. Arch Ophthalmol 127:270–274

    Article  PubMed  Google Scholar 

  41. Drance S, Anderson DR, Schulzer M (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708

    Article  PubMed  CAS  Google Scholar 

  42. The Advanced Glaucoma Intervention Study (AGIS): 1. (1994) Study design and methods and baseline characteristics of study patients. Control Clin Trials 15:299–325

    Google Scholar 

  43. Advanced Glaucoma Intervention Study. 2. (1994) Visual field test scoring and reliability. Ophthalmology 101:1445–1455

    Google Scholar 

  44. Gillespie BW, Musch DC, Guire KE, Mills RP, Lichter PR, Janz NK, Wren PA (2003) The collaborative initial glaucoma treatment study: baseline visual field and test-retest variability. Invest Ophthalmol Vis Sci 44:2613–2620

    Article  PubMed  Google Scholar 

  45. Leske MC, Heijl A, Hyman L, Bengtsson B (1999) Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology 106:2144–2153

    Article  PubMed  CAS  Google Scholar 

  46. Bengtsson B, Lindgren A, Heijl A, Lindgren G, Asman P, Patella M (1997) Perimetric probability maps to separate change caused by glaucoma from that caused by cataract. Acta Ophthalmol Scand 75:184–188

    Article  PubMed  CAS  Google Scholar 

  47. Arnalich-Montiel F, Casas-Llera P, Munoz-Negrete FJ, Rebolleda G (2009) Performance of glaucoma progression analysis software in a glaucoma population. Graefes Arch Clin Exp Ophthalmol 247:391–397

    Article  PubMed  Google Scholar 

  48. Heijl A, Bengtsson B, Chauhan BC, Lieberman MF, Cunliffe I, Hyman L, Leske MC (2008) A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmology 115:1557–1565

    Article  PubMed  Google Scholar 

  49. Nouri-Mahdavi K, Hoffman D, Ralli M, Caprioli J (2007) Comparison of methods to predict visual field progression in glaucoma. Arch Ophthalmol 125:1176–1181

    Article  PubMed  Google Scholar 

  50. Vesti E, Johnson CA, Chauhan BC (2003) Comparison of different methods for detecting glaucomatous visual field progression. Invest Ophthalmol Vis Sci 44:3873–3879

    Article  PubMed  Google Scholar 

  51. Kim J, Dally LG, Ederer F, Gaasterland DE, VanVeldhuisen PC, Blackwell B, Sullivan EK, Prum B, Shafranov G, Beck A, Spaeth GL (2004) The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visual field fluctuations. Ophthalmology 111:2109–2116

    Article  PubMed  Google Scholar 

  52. Nouri-Mahdavi K, Caprioli J, Coleman AL, Hoffman D, Gaasterland D (2005) Pointwise linear regression for evaluation of visual field outcomes and comparison with the advanced glaucoma intervention study methods. Arch Ophthalmol 123:193–199

    Article  PubMed  Google Scholar 

  53. Holmin C, Krakau CE (1982) Regression analysis of the central visual field in chronic glaucoma cases. A follow-up study using automatic perimetry. Acta Ophthalmol (Copenh) 60:267–274

    Article  CAS  Google Scholar 

  54. Krakau CE (1985) A statistical trap in the evaluation of visual field decay. Acta Ophthalmol Suppl 173:19–21

    PubMed  CAS  Google Scholar 

  55. Noureddin BN, Poinoosawmy D, Fietzke FW, Hitchings RA (1991) Regression analysis of visual field progression in low tension glaucoma. Br J Ophthalmol 75:493–495

    Article  PubMed  CAS  Google Scholar 

  56. Smith SD, Katz J, Quigley HA (1996) Analysis of progressive change in automated visual fields in glaucoma. Invest Ophthalmol Vis Sci 37:1419–1428

    PubMed  CAS  Google Scholar 

  57. Katz J, Gilbert D, Quigley HA, Sommer A (1997) Estimating progression of visual field loss in glaucoma. Ophthalmology 104:1017–1025

    PubMed  CAS  Google Scholar 

  58. Nouri-Mahdavi K, Brigatti L, Weitzman M, Caprioli J (1997) Comparison of methods to detect visual field progression in glaucoma. Ophthalmology 104:1228–1236

    PubMed  CAS  Google Scholar 

  59. Viswanathan AC, Fitzke FW, Hitchings RA (1997) Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2. Br J Ophthalmol 81:1037–1042

    Article  PubMed  CAS  Google Scholar 

  60. Wild JM, Hutchings N, Hussey MK, Flanagan JG, Trope GE (1997) Pointwise univariate linear regression of perimetric sensitivity against follow-up time in glaucoma. Ophthalmology 104:808–815

    PubMed  CAS  Google Scholar 

  61. Membrey WL, Poinoosawmy DP, Bunce C, Fitzke FW, Hitchings RA (2000) Comparison of visual field progression in patients with normal pressure glaucoma between eyes with and without visual field loss that threatens fixation. Br J Ophthalmol 84:1154–1158

    Article  PubMed  CAS  Google Scholar 

  62. Membrey WL, Bunce C, Poinoosawmy DP, Fitzke FW, Hitchings RA (2001) Glaucoma surgery with or without adjunctive antiproliferatives in normal tension glaucoma: 2 Visual field progression. Br J Ophthalmol 85:696–701

    Article  PubMed  CAS  Google Scholar 

  63. Lachenmayr BJ, Kiermeir U, Kojetinsky S (1995) Points of a normal visual field are not statistically independent. Ger J Ophthalmol 4:175–181

    PubMed  CAS  Google Scholar 

  64. Heijl A, Lindgren G, Olsson J (1987) Normal variability of static perimetric threshold values across the central visual field. Arch Ophthalmol 105:1544–1549

    PubMed  CAS  Google Scholar 

  65. Rasker MT, van den Enden A, Bakker D, Hoyng PF (2000) Rate of visual field loss in progressive glaucoma. Arch Ophthalmol 118:481–488

    PubMed  CAS  Google Scholar 

  66. Caprioli J, Mock D, Bitrian E, Afifi AA, Yu F, Nouri-Mahdavi K, Coleman AL (2011) A method to measure and predict rates of regional visual field decay in glaucoma. Invest Ophthalmol Vis Sci. 52:4765–73

    Google Scholar 

  67. Chauhan BC, Drance SM, Douglas GR (1990) The use of visual field indices in detecting changes in the visual field in glaucoma. Invest Ophthalmol Vis Sci 31:512–520

    PubMed  CAS  Google Scholar 

  68. Broman AT, Quigley HA, West SK, Katz J, Munoz B, Bandeen-Roche K, Tielsch JM, Friedman DS, Crowston J, Taylor HR, Varma R, Leske MC, Bengtsson B, Heijl A, He M, Foster PJ (2008) Estimating the rate of progressive visual field damage in those with open-angle glaucoma, from cross-sectional data. Invest Ophthalmol Vis Sci 49:66–76

    Article  PubMed  Google Scholar 

  69. Heijl A, Bengtsson B, Hyman L, Leske MC (2009) Natural history of open-angle glaucoma. Ophthalmology 116:2271–2276

    Article  PubMed  Google Scholar 

  70. Bengtsson B, Heijl A (2008) A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol 145:343–353

    Article  PubMed  Google Scholar 

  71. Artes PH, O'Leary N, Hutchison D, Heckler L, Sharpe G, Nicolela MT, Chauhan BC (2011) Properties of the Statpac Visual Field Index. Invest Ophthalmol Vis Sci. 52:4030–8

    Google Scholar 

  72. Casas-Llera P, Rebolleda G, Munoz-Negrete FJ, Arnalich-Montiel F, Perez-Lopez M, Fernandez-Buenaga R (2009) Visual field index rate and event-based glaucoma progression analysis: comparison in a glaucoma population. Br J Ophthalmol 93:1576–1579

    Article  PubMed  CAS  Google Scholar 

  73. Caprioli J, Spaeth GL (1985) Static threshold examination of the peripheral nasal visual field in glaucoma. Arch Ophthalmol 103:1150–1154

    PubMed  CAS  Google Scholar 

  74. Chen PP (2002) Correlation of visual field progression between eyes in patients with open-angle glaucoma. Ophthalmology 109:2093–2099

    Article  PubMed  Google Scholar 

  75. Werner EB, Bishop KI, Koelle J, Douglas GR, LeBlanc RP, Mills RP, Schwartz B, Whalen WR, Wilensky JT (1988) A comparison of experienced clinical observers and statistical tests in detection of progressive visual field loss in glaucoma using automated perimetry. Arch Ophthalmol 106:619–623

    PubMed  CAS  Google Scholar 

  76. Viswanathan AC, Crabb DP, McNaught AI, Westcott MC, Kamal D, Garway-Heath DF, Fitzke FW, Hitchings RA (2003) Interobserver agreement on visual field progression in glaucoma: a comparison of methods. Br J Ophthalmol 87:726–730

    Article  PubMed  CAS  Google Scholar 

  77. Chauhan BC, Drance SM, LeBlanc RP, Lieberman MF, Mills RP, Werner EB (1994) Technique for determining glaucomatous visual field progression by using animation graphics. Am J Ophthalmol 118:485–491

    PubMed  CAS  Google Scholar 

  78. Katz J (2000) A comparison of the pattern- and total deviation-based Glaucoma Change Probability programs. Invest Ophthalmol Vis Sci 41:1012–1016

    PubMed  CAS  Google Scholar 

  79. Manassakorn A, Nouri-Mahdavi K, Koucheki B, Law SK, Caprioli J (2006) Pointwise linear regression analysis for detection of visual field progression with absolute versus corrected threshold sensitivities. Invest Ophthalmol Vis Sci 47:2896–2903

    Article  PubMed  Google Scholar 

  80. Boden C, Sample PA, Boehm AG, Vasile C, Akinepalli R, Weinreb RN (2002) The structure-function relationship in eyes with glaucomatous visual field loss that crosses the horizontal meridian. Arch Ophthalmol 120:907–912

    PubMed  Google Scholar 

  81. Asman P, Heijl A (1994) Diffuse visual field loss and glaucoma. Acta Ophthalmol (Copenh) 72:303–308

    Article  CAS  Google Scholar 

  82. Chauhan BC, LeBlanc RP, Shaw AM, Chan AB, McCormick TA (1997) Repeatable diffuse visual field loss in open-angle glaucoma. Ophthalmology 104:532–538

    PubMed  CAS  Google Scholar 

  83. Drance SM (1991) Diffuse visual field loss in open-angle glaucoma. Ophthalmology 98:1533–1538

    PubMed  CAS  Google Scholar 

  84. Henson DB, Artes PH, Chauhan BC (1999) Diffuse loss of sensitivity in early glaucoma. Invest Ophthalmol Vis Sci 40:3147–3151

    PubMed  CAS  Google Scholar 

  85. Artes PH, Nicolela MT, LeBlanc RP, Chauhan BC (2005) Visual field progression in glaucoma: total versus pattern deviation analyses. Invest Ophthalmol Vis Sci 46:4600–4606

    Article  PubMed  Google Scholar 

  86. Asman P, Wild JM, Heijl A (2004) Appearance of the pattern deviation map as a function of change in area of localized field loss. Invest Ophthalmol Vis Sci 45:3099–3106

    Article  PubMed  Google Scholar 

  87. Henson DB, Spenceley SE, Bull DR (1996) Spatial classification of glaucomatous visual field loss. Br J Ophthalmol 80:526–531

    Article  PubMed  CAS  Google Scholar 

  88. Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J (1997) Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol 115:725–728

    PubMed  CAS  Google Scholar 

  89. Lin A, Hoffman D, Gaasterland DE, Caprioli J (2003) Neural networks to identify glaucomatous visual field progression. Am J Ophthalmol 135:49–54

    Article  PubMed  Google Scholar 

  90. Goldbaum MH, Sample PA, Chan K, Williams J, Lee TW, Blumenthal E, Girkin CA, Zangwill LM, Bowd C, Sejnowski T, Weinreb RN (2002) Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Invest Ophthalmol Vis Sci 43:162–169

    PubMed  Google Scholar 

  91. Sample PA, Goldbaum MH, Chan K, Boden C, Lee TW, Vasile C, Boehm AG, Sejnowski T, Johnson CA, Weinreb RN (2002) Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Invest Ophthalmol Vis Sci 43:2660–2665

    Google Scholar 

  92. Goldbaum MH (2005) Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects. Trans Am Ophthalmol Soc 103:270–280

    Google Scholar 

  93. Sample PA, Boden C, Zhang Z, Pascual J, Lee TW, Zangwill LM, Weinreb RN, Crowston JG, Hoffmann EM, Medeiros FA, Sejnowski T, Goldbaum M (2005) Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci 46:3684–2692

    Google Scholar 

  94. Nouri-Mahdavi K, Hoffman D, Gaasterland D, Caprioli J (2004) Prediction of visual field progression in glaucoma. Invest Ophthalmol Vis Sci 45:4346–4351

    Article  PubMed  Google Scholar 

  95. Fitzke FW, Hitchings RA, Poinoosawmy D, McNaught AI, Crabb DP (1996) Analysis of visual field progression in glaucoma. Br J Ophthalmol 80:40–48

    Article  PubMed  CAS  Google Scholar 

  96. Strouthidis NG, Scott A, Viswanathan AC, Crabb DP, Garway-Heath DF (2007) Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. Invest Ophthalmol Vis Sci 48:251–257

    Article  PubMed  Google Scholar 

  97. Diaz-Aleman VT, Anton A, de la Rosa MG, Johnson ZK, McLeod S, Azuara-Blanco A (2009) Detection of visual-field deterioration by Glaucoma Progression Analysis and Threshold Noiseless Trend programs. Br J Ophthalmol 93:322–328

    Article  PubMed  CAS  Google Scholar 

  98. Bengtsson B, Patella VM, Heijl A (2009) Prediction of glaucomatous visual field loss by extrapolation of linear trends. Arch Ophthalmol 127:1610–1615

    Article  PubMed  Google Scholar 

  99. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E (2003) Factors for glaucoma progression and the effect of treatment: the Early Manifest Glaucoma Trial. Arch Ophthalmol 121:48–56

    PubMed  Google Scholar 

  100. De Moraes CG, Prata TS, Tello C, Ritch R, Liebmann JM (2009) Glaucoma with early visual field loss affecting both hemifields and the risk of disease progression. Arch Ophthalmol 127:1129–1134

    Article  PubMed  Google Scholar 

  101. Miglior S, Torri V, Zeyen T, Pfeiffer N, Vaz JC, Adamsons I (2007) Intercurrent factors associated with the development of open-angle glaucoma in the European Glaucoma Prevention Study. Am J Ophthalmol 144:266–275

    Article  PubMed  Google Scholar 

  102. Kunimatsu S, Suzuki Y, Shirato S, Araie M (2000) Usefulness of gaze tracking during perimetry in glaucomatous eyes. Jpn J Ophthalmol 44:190–191

    Article  PubMed  Google Scholar 

  103. Jansonius NM (2010) On the accuracy of measuring rates of visual field change in glaucoma. Br J Ophthalmol 94:1404–1405

    Article  PubMed  CAS  Google Scholar 

  104. Jansonius NM (2006) Towards an optimal perimetric strategy for progression detection in glaucoma: from fixed-space to adaptive inter-test intervals. Graefes Arch Clin Exp Ophthalmol 244:390–393

    Article  PubMed  Google Scholar 

  105. Jansonius NM (2007) Progression detection in glaucoma can be made more efficient by using a variable interval between successive visual field tests. Graefes Arch Clin Exp Ophthalmol 245:1647–1651

    Article  PubMed  Google Scholar 

Download references

Financial interest

The authors have no financial interest in the products mentioned in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouros Nouri-Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nouri-Mahdavi, K., Nassiri, N., Giangiacomo, A. et al. Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications. Graefes Arch Clin Exp Ophthalmol 249, 1593–1616 (2011). https://doi.org/10.1007/s00417-011-1787-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1787-5

Keywords

Navigation