Skip to main content

Standard Automated Perimetry

  • Chapter
Glaucoma Imaging

Abstract

This chapter aims to describe and update several aspects on visual field testing in glaucoma, including its fundaments, methodology, and illustrations. First, basic aspects on the visual field and standard automated perimetry are considered. Next, the importance of quality of results for both single field analysis and visual field series is emphasized in order to obtain a reliable baseline and follow-up information. Criteria recommended for glaucoma diagnosis are then revisited, suggesting use of change detection algorithms, like event and trend analysis, in addition to classic binary classifiers. The use of these algorithms in progression detection and assessment is outlined as well. Following on from this, it is described how the rate of progression can be estimated and used in clinical practice. Finally, the challenge of measuring and monitoring advanced damage is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, all the examples of VF printouts come from Carl Zeiss-Meditec Humprey Field Analyzer (HFA) system.

  2. 2.

    In the HFA system, MD values are represented as negative values, but terms like “increased” or “elevated” are frequently used in clinical practice, as MD is intuitively considered an absolute number. In the written text, we will preserve the negative sign for MD and VFI, and “increased” or “elevated” will actually refer to more negative values.

References

  1. Palma C (2014) Electromagnetic radiation and astronomical observations. Course Astro 801. https://www.e-education.psu.edu/astro801/content/l3_p4.html. Accessed 20 Dec 2014

  2. Flammer J (1986) The concept of visual field indices. Graefe’s Arch Clin Exp Ophthalmol 224(5):389–392

    Article  CAS  Google Scholar 

  3. Heijl A, Lindgren G, Olsson J (1987) Normal variability of static perimetric threshold values across the central visual field. Acta Ophthalmol 105(11):1544–1549

    CAS  Google Scholar 

  4. Bengtsson B, Heijl A (2008) A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol 145(2):343–353

    Article  PubMed  Google Scholar 

  5. Humphrey Field Analyzer II User’s Guide (1994) Humphrey Instruments Inc. San Leandro

    Google Scholar 

  6. Newkirk MR, Gardiner SK, Demirel S et al (2006) Assessment of false positives with the Humphrey Field Analyzer II perimeter with the SITA algorithm. Invest Ophthalmol Vis Sci 47(10):4632–4637

    Article  PubMed  Google Scholar 

  7. Wall M, Doyle CK, Brito CF et al (2008) A comparison of catch trial methods used in standard automated perimetry in glaucoma patients. J Glaucoma 17(8):626–630

    Article  PubMed  Google Scholar 

  8. Caprioli J (1991) Automated perimetry in glaucoma. Am J Ophthalmol 111(2):235–239

    Article  CAS  PubMed  Google Scholar 

  9. Rao HL, Yadav RK, Begum VU et al (2015) Role of visual field reliability indices in ruling out glaucoma. JAMA Ophthalmol 133(1):40–44

    Article  PubMed  Google Scholar 

  10. Keltner JL, Johnson CA, Cello KE et al (2007) Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma 16(8):665–669

    Article  PubMed  Google Scholar 

  11. Wood JM, Wild JM, Hussey MK et al (1987) Serial examination of the normal visual field using Octopus automated projection perimetry. Evidence for a learning effect. Acta Ophthalmol (Copenh) 65(3):326–333

    Article  CAS  Google Scholar 

  12. Gardiner SK, Demirel S, Johnson CA (2008) Is there evidence for continued learning over multiple years in perimetry? Optom Vis Sci 85(11):1043–1048

    Article  PubMed Central  PubMed  Google Scholar 

  13. Goñi FJ; Glaucoma Progression Spanish Study Group (2012) Estudio multicéntrico Español Progress II sobre ritmos de progresión del campo visual en el glaucoma: resultados preliminares de la fase retrospectiva. Oral presentation at the 7th Spanish Glaucoma Society meeting, Alicante

    Google Scholar 

  14. Henson DB, Chaudry S, Artes PH et al (2000) Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci 41(2):417–421

    CAS  PubMed  Google Scholar 

  15. Siderov J, Al T (1999) Variability of measurements of visual acuity in a large eye clinic. Acta Ophthalmol Scand 77:673–676

    Article  CAS  PubMed  Google Scholar 

  16. Chauhan BC, Tompkins JD, LeBlanc RP et al (1993) Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma and patients with glaucoma. Invest Ophthalmol Vis Sci 34(13):3534–3540

    CAS  PubMed  Google Scholar 

  17. Heijl A, Lindgren A, Lindgren G (1989) Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 108(2):130–135

    Article  CAS  PubMed  Google Scholar 

  18. Jansonius NM (2010) On the accuracy of measuring rates of visual field change in glaucoma. Br J Ophthalmol 94(10):1404–1405

    Article  CAS  PubMed  Google Scholar 

  19. Heijl A, Lundqvist L (1984) The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol (Copenh) 62(4):658–664

    Article  CAS  Google Scholar 

  20. Keltner JL, Johnson CA, Quigg JM et al (2004) Invest Ophthalmol Vis Sci 45:E-Abstract 2134. Abstracts’ book of 76th ARVO meeting

    Google Scholar 

  21. Budenz DL, Rhee P, Feuer WJ, et al (2009) Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects. Ophthalmology 109(6):1052–1058

    Google Scholar 

  22. Sekhar GC, Naduvilath TJ, Lakkai M et al (2000) Sensitivity of Swedish Interactive Threshold Algorithm in Humphrey visual field testing. Ophthalmology 107(7):1303–1308

    Article  CAS  PubMed  Google Scholar 

  23. Caprioli J, Garway-Heath DF, International Glaucoma Think Tank (2007) A critical reevaluation of current glaucoma management: International Glaucoma Think Tank, July 27-29, 2006. Ophthalmology 114(11 Suppl):S1–S41

    Article  CAS  PubMed  Google Scholar 

  24. Vesti E, Johnson CA, Chauhan BC (2003) Comparison of different methods for detecting glaucomatous visual field progression. Invest Ophthalmol Vis Sci 44(9):3873–3879

    Article  PubMed  Google Scholar 

  25. Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279

    Article  PubMed  Google Scholar 

  26. Chauhan BC, Garway-Heath DF, Goñi FJ et al (2008) Practical recommendations for measuring rates of visual field change in glaucoma. Br J Opthalmol 92(4):569–573

    Article  CAS  Google Scholar 

  27. Heijl A, Bengtson B, Hyman L et al (2009) Natural history of open angle glaucoma. Opthalmology 116(12):2271–2276

    Article  Google Scholar 

  28. Chauhan BC, Mikelberg FS, Artes PH et al (2010) Canadian Glaucoma Study 3. Impact of risk factors and intraocular pressure reduction on the rates of vidual field change. Arch Opthalmol 128(10):1249–1255

    Article  Google Scholar 

  29. Drance S, Anderson DR, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group (2001) Risk factors for progression of visual field abnormalities in normal tension glaucoma. Am J Ophthalmol 131(6):699–708

    Article  CAS  PubMed  Google Scholar 

  30. AGIS investigators (2002) The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol 134(4):499–512

    Article  Google Scholar 

  31. Wesselink C, Heeg GP, Jansonius NM (2009) Glaucoma monitoring in a clinical setting: glaucoma progression analysis vs nonparametric progression analysis in the Groningen Longitudinal glaucoma Study. Arch Ophthalmol 127(3):270–274

    Article  PubMed  Google Scholar 

  32. Heijl A, Buchholz P, Norrgren G et al (2013) Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol 91(5):406–412

    Article  PubMed  Google Scholar 

  33. Chauhan BC, Malik R, Shuba LM et al (2014) Rates of glaucomatous visual field change in a large clinical population. Invest Ophthalmol Vis Sci 55(5):2885–2892

    Article  PubMed Central  PubMed  Google Scholar 

  34. Artes PH, O'Leary N, Hutchison DM (2011) Properties of the statpac visual field index. Invest Ophthalmol Vis Sci 52(7):4030–4038

    Article  PubMed  Google Scholar 

  35. Musch DC, Gillespie BW, Palmberg PF et al (2014) Visual field improvement in the collaborative initial glaucoma treatment study. Am J Ophthalmol 158(1):96–104

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mikelberg FS, Drance SM (1984) The mode of progression of visual field defects in glaucoma. Am J Opththalmol 98(4):443–445

    Article  CAS  Google Scholar 

  37. Boden C, Blumenthal EZ, Pascual J et al (2004) Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol 138(6):1029–1036

    Article  PubMed  Google Scholar 

  38. Araie M (1995) Pattern of visual field defects in normal-tension and high-tension glaucoma. Curr Opin Ophthalmol 6(2):36–45

    Article  CAS  PubMed  Google Scholar 

  39. Brusini P, Johnson CA (2007) Staging functional damage in glaucoma: review of different classification methods. Surv Ophthalmol 52(2):156–179

    Article  PubMed  Google Scholar 

  40. Ng M, Sample PA, Pascual JP et al (2012) Comparison of visual field severity classification systems. J Glaucoma 21(9):586–589

    Article  Google Scholar 

  41. Russell RA, Crabb DP, Malik R et al (2012) The relationship between variability and sensitivity in large-scale longitudinal visual field data. Invest Ophthalmol Vis Sci 53(10):5985–5990

    Article  PubMed  Google Scholar 

  42. Rao HL, Senthil S, Choudhari NS et al (2013) Behavior of visual field index in advanced glaucoma. Invest Ophthalmol Vis Sci 54(1):307–312

    Article  PubMed  Google Scholar 

  43. Wall M, Doyle CK, Eden T et al (2013) Size threshold perimetry performs as well as conventional automated perimetry with stimulus sizes III, V and VI for glaucomatous loss. Invest Ophthalmol Vis Sci 54(6):3975–3983

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Goñi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goñi, F.J., Maja, K. (2016). Standard Automated Perimetry. In: Ferreras, A. (eds) Glaucoma Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-18959-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18959-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18958-1

  • Online ISBN: 978-3-319-18959-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics