Skip to main content

Advertisement

Log in

The novel use of decorin in prevention of the development of proliferative vitreoretinopathy (PVR)

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The cytokine transforming growth factor-ß (TGF-ß) is a pivotal contributor to tissue fibrosis and a key cytokine in the pathogenesis of cellular transdifferentiation, epithelial-mesenchymal transition (EMT), and cell adhesion. This study evaluates the effect of decorin, a naturally occurring TGF-ß inhibitor, in an experimental rabbit model for proliferative vitreoretinopathy (PVR).

Methods

Traumatic PVR was induced in 50 rabbits divided into ten groups (n = 5). One group (GI) reveals a control with no treatment after trauma. Groups (GII–GIV) consisted of subgroups receiving phacovitrectomy at three different time points; (a) at the time of trauma, (b) 1 week following trauma, and (c) 2 weeks following trauma. GIII and GIV received 100 μg or 200 μg decorin, respectively. PVR severity was scored from 0 to 4. The amount of fibrosis was quantified using JMicroVision© software.

Results

The control group GI developed severe PVR with tractional retinal detachment (TRD); (PVR score ≥2) in four rabbits out of five. Vitrectomy had a positive effect (p < 0.05) on PVR development when preformed immediately, however the developed fibrosis was high. The best results were obtained when surgery was used in conjunction with decorin that reduced both the PVR score and fibrosis development significantly (p < 0.05). Depending on dosage and time of vitrectomy, PVR could be completely avoided (PVR score = 0) in 16 rabbits out of 30. TRD was prevented in 13 rabbits out of 15 in GIII to 14 rabbits out of 15 in GIV. In decorin-treated eyes, vitrectomy outcome was best when preformed at 1 week after trauma. There were no drug-related toxic effects evident on clinical and histopathological examination.

Conclusions

In conclusion, in this rabbit model of PVR, adjuvant decorin application during vitrectomy effectively reduces fibrosis and TRD development. In conjunction with no obvious histopathological toxicity signs, decorin represents a promising substance to inhibit PVR reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanihara H, Inatani M, Koga T, Yano T, Kimura A (2002) Proteoglycans in the eye. Cornea 21:S62–S69

    Article  PubMed  Google Scholar 

  2. Hagedorn M, Esser P, Wiedemann P, Heimann K (1993) Tenascin and decorin in epiretinal membranes of proliferative vitreoretinopathy and proliferative diabetic retinopathy. Ger J Ophthalmol 2:28–31

    PubMed  CAS  Google Scholar 

  3. Iozzo R (1999) The biology of the small leucine-rich proteoglycan. J Biol Chem 27:18843–18846

    Article  Google Scholar 

  4. Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587–597

    PubMed  CAS  Google Scholar 

  5. Fleischmajer R, Fisher LW, MacDonald ED, Jacobs L Jr, Perlish JS, Termine JD (1991) Decorin interacts with fibrillar collagen of embryonic and adult human skin. J Struct Biol 106:82–90

    Article  PubMed  CAS  Google Scholar 

  6. Bidanset DJ, Guidry C, Rosenberg LC, Choi HU, Timpl R, Hook M (1992) Binding of the proteoglycan decorin to collagen type VI. J Biol Chem 267:5250–5256

    PubMed  CAS  Google Scholar 

  7. Winnemoller M, Schon P, Vischer P, Kresse H (1992) Interactions between thrombospondin and the small proteoglycan decorin: interference with cell attachment. Eur J Cell Biol 59:47–55

    PubMed  CAS  Google Scholar 

  8. Lewandowska K, Choi HU, Rosenberg LC, Zardi L, Culp LA (1987) Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain. J Cell Biol 105:1443–1454

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt G, Robenek H, Harrach B, Glössl J, Nolte V, Hörmann H, Richter H, Kresse H (1987) Interaction of small dermatan sulfate proteoglycan from fibroblasts with fibronectin. J Cell Biol 104:1683–1691

    Article  PubMed  CAS  Google Scholar 

  10. Vogel KG, Trotter JA (1987) The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll Relat Res 7:105–114

    PubMed  CAS  Google Scholar 

  11. Yamaguchi Y, Mann DM, Ruoslahti E (1990) Negative regulation of transforming growth factor- by the proteoglycan decorin. Nature 346:281–284

    Article  PubMed  CAS  Google Scholar 

  12. Takeuchi Y, Kodama Y, Matsumoto T (1994) Bone matrix decorin binds transforming growth factor- and enhances its bioactivity. J Biol Chem 269:32634–32638

    PubMed  CAS  Google Scholar 

  13. Vial C, Gutierrez J, Santander C, Cabrera D, Brandan E (2011) Decorin interacts with CTGF/CCN2 through LRR12 inhibiting its biological activity. J Biol Chem 2011 Mar 23. [Epub ahead of print]

  14. Nili N, Cheema AN, Giordano FJ, Barolet AW, Babaei S, Hickey R, Eskandarian MR, Smeets M, Butany J, Pasterkamp G, Strauss BH (2003) Decorin inhibition of PDGF-stimulated vascular smooth muscle cell function. Am J Pathol 163:869–878

    Article  PubMed  CAS  Google Scholar 

  15. Moscatello DK, Santra M, Mann DM, McQuillan DJ, Wong AJ, Iozzo RV (1998) Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J Clin Invest 101:406–412

    Article  PubMed  CAS  Google Scholar 

  16. Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I (1999) Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem 274:4489–4493

    Article  PubMed  CAS  Google Scholar 

  17. Patel S, Santra M, McQuillan DJ, Iozzo RV, Thomas AP (1998) Decorin activates the epidermal growth factor receptor and elevates cytosolic Ca2+ in A431 carcinoma cells. J Biol Chem 273:3121–3124

    Article  PubMed  CAS  Google Scholar 

  18. Hausser H, Wedekind P, Sperber T, Peters R, Hasilik A, Kresse H (1996) Isolation and cellular localization of the decorin endocytosis receptor. Eur J Cell Biol 71:325–331

    PubMed  CAS  Google Scholar 

  19. Rachal WF, Burton TC (1979) Changing concepts of failure after retinal detachment surgery. Arch Ophthalmol 97:480–483

    PubMed  CAS  Google Scholar 

  20. Kauffmann DJ, van Meurs JC, Mertens DA, Peperkamp E, Master C, Gerritsen ME (1994) Cytokines in vitreous humor: interleukin-6 is elevated in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sic 35:900–906

    CAS  Google Scholar 

  21. Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC (1991) Cytokines in proliferative vitreoretinopathy. Eye 5:686–693

    Article  PubMed  Google Scholar 

  22. Casaroli-Marano RP, Pagan R, Vilaró S (1999) Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:2062–2072

    PubMed  CAS  Google Scholar 

  23. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    PubMed  CAS  Google Scholar 

  24. Bornstein P (2001) Thrombospondins as matricellular modulators of cell function. J Clin Invest 107:929–934

    Article  PubMed  CAS  Google Scholar 

  25. Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sic 108:985–1002

    CAS  Google Scholar 

  26. Cordeiro MF, Gay JA, Khaw PT (1999) Human anti-transforming growth factor-2 antibody: a new glaucoma anti-scarring agent. Invest Ophthalmol Vis Sci 40:2225–2234

    PubMed  CAS  Google Scholar 

  27. Siriwardena D, Khaw PT, King AJ (2002) Human antitransforming growth factor beta (2) monoclonal antibody, a new modulator of wound healing in trabeculectomy: a randomized placebo controlled clinical study. Ophthalmology 190:427–431

    Article  Google Scholar 

  28. Grisanti S, Szurman P, Warga M, Kaczmarek R, Ziemssen F, Tatar O, Bartz-Schmidt KU (2005) Decorin modulates wound healing in experimental glaucoma filtration surgery: a pilot study. Invest Ophthalmol Vis Sci 46:191–196

    Article  PubMed  Google Scholar 

  29. Cleary PE, Ryan SJ (1979) Experimental posterior penetrating eye injury in the rabbit I. Method of production and natural history. Br J Ophthalmol 63:306–311

    Article  PubMed  CAS  Google Scholar 

  30. Hsu HT, Ryan SJ (1986) Natural history of penetrating ocular injury with retinal laceration in the monkey. Graefes Arch Clin Exp Ophthalmol 224:1–6

    Article  PubMed  CAS  Google Scholar 

  31. Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR (2007) In vivo models of proliferative vitreoretinopathy. Nat Protoc 2:67–77

    Article  PubMed  CAS  Google Scholar 

  32. Vergara O, Ogden T, Ryan SJ (1989) Posterior penetrating injury to the rabbit eye: effect of blood and ferrous ions. Exp Eye Res 49:1115–1126

    Article  PubMed  CAS  Google Scholar 

  33. Cardillo JA, Stout JT, LaBree L, Azen SP, Omphroy L, Cui JZ, Kimura H, Hinton DR, Ryan SJ (1997) Post-traumatic proliferative vitreoretinopathy. The epidemiologic profile, onset, risk factors, and visual outcome. Ophthalmology 104:1166–1173

    PubMed  CAS  Google Scholar 

  34. Sehu W, Lee W (2005) Ophthalmic pathology: an illustrated guide for clinicians. Blackwell Publishing Ltd, Massachusetts

    Google Scholar 

  35. Cardillo JA, Farah ME, Mitre J, Morales PH, Costa RA, Melo LA, Kuppermann B, Jorge R, Ashton P (2004) An intravitreal biodegradable sustained release naproxen and 5-fluorouracil system for the treatment of experimental post-traumatic proliferative vitreoretinopathy. Br J Ophthalmol 88:1201–1205

    Article  PubMed  CAS  Google Scholar 

  36. Roduit N (2010) JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.2.2. http://www.jmicrovision.com. Access on 8 January 2010

  37. Charteris DG (1995) Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol 79:953–960

    Article  PubMed  CAS  Google Scholar 

  38. Ryan SJ (1985) The pathophysiology of proliferative vitreoretinopathy in its management. Am J Ophthalmol 100:188–193

    PubMed  CAS  Google Scholar 

  39. Kolb M, Margetts PJ, Sime PJ, Gauldie J (2001) Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am J Physiol Lung Cell Mol Physiol 280:L1327–L1334

    PubMed  CAS  Google Scholar 

  40. Ständer M, Naumann U, Wick W, Weller M (1999) Transforming growth factor-beta and p-21: multiple molecular targets of decorin-mediated suppression of neoplastic growth. Cell Tissue Res 296:221–227

    Article  PubMed  Google Scholar 

  41. Merle B, Malaval L, Lawler J, Delmas P, Clezadin P (1997) Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. J Cell Biochem 67:75–83

    Article  PubMed  CAS  Google Scholar 

  42. Merle B, Durussel L, Delmas PD, Clezardin P (1999) Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. J Cell Biochem 75:538–546

    Article  PubMed  CAS  Google Scholar 

  43. Yamaguchi Y, Ruoslahti E (1988) Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature 336:244–246

    Article  PubMed  CAS  Google Scholar 

  44. De Luca A, Santra M, Baldi A, Giordano A, Iozzo RV (1996) Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases. J Biol Chem 271:18961–18965

    Article  PubMed  Google Scholar 

  45. Isaka Y, Brees D, Ikegaya K, Kaneda Y, Imai E, Noble N (1996) Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 2:418–423

    Article  PubMed  CAS  Google Scholar 

  46. Giri S, Hyde D, Braun R, Gaarde W (1997) Antifibrotic effect of decorin in a bleomycin hamster model of lung fibrosis. Biochem Pharmacol 54:1205–1217

    Article  PubMed  CAS  Google Scholar 

  47. Logan A, Baird A, Berry M (1999) Decorin attenuates gliotic scar formation in the rat cerebral hemisphere. Exp Neurol 159:504–510

    Article  PubMed  CAS  Google Scholar 

  48. Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29:394–402

    PubMed  CAS  Google Scholar 

  49. Mohan RR, Gupta R, Mehan MK, Cowden JW, Sinha S (2010) Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Exp Eye Re 91:238–245

    Article  CAS  Google Scholar 

  50. Cleary PE, Larus G, Ryan SJ (1979) Experimental posterior penetrating eye injury in the rhesus monkey: vitreous-lens admixture. Br J Ophthalmol 64:801–808

    Article  Google Scholar 

  51. Cleary PE, Ryan SJ (1981) Vitrectomy in penetrating eye injury. Results of a controlled trial of vitrectomy in an experimental posterior penetrating eye injury in the rhesus monkey. Arch Ophthalmol 99:287–292

    PubMed  CAS  Google Scholar 

  52. Cleary PE, Ryan SJ (1979) Experimental posterior penetrating eye injury in the rabbit II. Histology of wound, vitreous, and retina. Br J Ophthalmol 63:312–321

    Article  PubMed  CAS  Google Scholar 

  53. Hsu HT, Ryan SJ (1986) Experimental retinal detachment in the rabbit. Penetrating ocular injury with retinal laceration. Retina 6:66–69

    Article  PubMed  CAS  Google Scholar 

  54. Margo CE, Lee A (1995) Fixation of whole eyes: the role of fixative osmolarity in the production of tissue artifact. Graefe's Arch Clin Exp Ophthalmol 233:366–370

    Article  CAS  Google Scholar 

  55. Blumenkranz MS, Ophir A, Clafiin AJ, Kajek A (1982) Fluorouracil for the treatment of massive preretinal proliferation. Am J Ophthalmol 94:458–467

    PubMed  CAS  Google Scholar 

  56. Fastenberg DM, Diddie KR, Sorgente N, Ryan SJ (1982) A comparison of different cellular innocula in an experimental model of massive periretinal proliferation. Am J Ophthalmol 93:559–564

    PubMed  CAS  Google Scholar 

  57. Fastenberg DM, Diddie KR, Dorey K, Ryan SJ (1982) The role of cellular proliferation in an experimental model of massive periretinal proliferation. Am J Ophthalmol 93:565–572

    PubMed  CAS  Google Scholar 

  58. Hida T, Chandler DB, Sheta SM (1987) Classification of the stages of proliferative vitreoretinopathy in a refined experimental model in the rabbit eye. Graefes Arch Clin Exp Ophthalmol 225:303–307

    Article  PubMed  CAS  Google Scholar 

  59. Au Eong KG, Kent D, Pieramici DJ (2002) Section III Mechanical globe injuries, chapter 23 vitreous and retina. In: Kuhn F, Pieramici DJ (eds) Ocular trauma principles and practice. Thieme Medical Publishers, New York, p 224

    Google Scholar 

  60. Mittra RA, Mieler WF (1999) Controversies in the management of open-globe injuries involving the posterior segment. Surv Ophthalmol 44:215–225

    Article  PubMed  CAS  Google Scholar 

  61. Spalding SC, Sternberg P Jr (1990) Controversies in the management of posterior segment ocular trauma. Retina 10(Suppl 1):S76–S82

    PubMed  Google Scholar 

  62. Wang NK, Chen YP, Yeung L, Chen KJ, Chao AN, Kuo YH, Lee JS, Lai CC (2007) Traumatic pediatric retinal detachment following open globe injury. Ophthalmologica 221:255–263

    Article  PubMed  Google Scholar 

  63. Ashton P (2006) Retinal Drug Delivery. In: Jaffe JG, Ashton P, Pearson PA (eds) Intraocular drug delivery. Taylor and Francis Group, New York, pp 11–12

    Google Scholar 

  64. Girard P, Mimoun G, Karpouzas I, Montefiore G (1994) Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina 14:417–424

    Article  PubMed  CAS  Google Scholar 

  65. Nagasaki H, Shinagawa K (1995) Risk factors for proliferative vitreoretinopathy. Curr Opin Ophthalmol 6:70–75

    Article  PubMed  CAS  Google Scholar 

  66. Mohan RR, Tovey JC, Gupta R, Sharma A, Tandon A (2011) Decorin biology, expression, function and therapy in the cornea. Curr Mol Med 11:110–128

    PubMed  CAS  Google Scholar 

  67. Meenakshi J, Vidyameenakshi S, Ananthram D, Ramakrishnan KM, Jayaraman V, Babu M (2009) Low decorin expression along with inherent activation of ERK1, 2 in ear lobe keloids. Burns 5:519–526

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Herbert Funke Foundation, Germany and by the ministry of high education of the Egyptian government. We thank Mrs. Christine Örün for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Nassar.

Additional information

The authors have no financial relationship with the sponsoring foundation. The authors have full control of all primary data and they agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27 kb)

(WMV 20709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassar, K., Lüke, J., Lüke, M. et al. The novel use of decorin in prevention of the development of proliferative vitreoretinopathy (PVR). Graefes Arch Clin Exp Ophthalmol 249, 1649–1660 (2011). https://doi.org/10.1007/s00417-011-1730-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1730-9

Keywords

Navigation