Skip to main content

Advertisement

Log in

Similarities and differences between primary and secondary degeneration of the optic nerve and the effect of minocycline

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the mechanism of secondary degeneration of the optic nerve, and to evaluate the neuroprotective effect of minocycline in this process.

Methods

A partial transection model that morphologically separates primary and secondary degeneration was applied unilaterally in 152 Wistar rat eyes. The involvement of pro-apoptotic, pro-survival and inflammatory pathways was analyzed by quantitative real-time PCR and immunohistochemistry at multiple time points. The neuroprotective effect of daily intraperitoneal injections of minocycline 22 mg/kg/day was evaluated at 7, 11 and 21 days post-injury. Retrograde labeling of retinal ganglion cells (RGCs) with fluorogold was via the superior colliculus, and surviving RGCs were counted using retinal whole mounts.

Results

Both primary and secondary degeneration led to a significant up-regulation of the pro-apoptotic genes, GADD45α, ei24 and CDK2, and the pro-survival gene, IAP-1. These processes differed, however, in their reaction to minocycline. Minocycline protected RGC death from secondary degeneration at 11 days (6 ± 8% loss compared to 37 ± 7% in the saline-treated group, n = 15, P = 0.012), and at 21 days (42 ± 7% versus 64 ± 7% respectively, n = 15, P = 0.06) after partial transection. In contrast, its effect on primary degeneration was not significant.

Conclusions

While the genetic profile supported similarities between primary and secondary degeneration of the optic nerve, the specific effect of minocycline on secondary degeneration revealed a potential difference between the two. The mechanism underlying secondary degeneration, and its role in optic neuropathies such as glaucoma, awaits further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levkovitch-Verbin H, Dardik R, Vander S, Nisgav Y, Kalev-Landoy M, Melamed S (2006) Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci 47:2491–2497

    Article  PubMed  Google Scholar 

  2. Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME (2002) Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 43:402–410

    PubMed  Google Scholar 

  3. Levkovitch-Verbin H, Dardik R, Vander S, Melamed S (2010) Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res 91(2):127–134

    Article  Google Scholar 

  4. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1:17–26

    Article  PubMed  CAS  Google Scholar 

  5. Nickells RW, Semaan SJ, Schlamp CL (2008) Involvement of the Bcl2 gene family in the signaling and control of retinal ganglion cell death. Prog Brain Res 173:423–435

    Article  PubMed  CAS  Google Scholar 

  6. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D'Anna SA, Kerrigan D, Pease ME (2001) Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci 42:975–982

    PubMed  CAS  Google Scholar 

  7. Levkovitch-Verbin H, Quigley HA, Martin KR, Zack DJ, Pease ME, Valenta DF (2003) A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci 44:3388–3393

    Article  PubMed  Google Scholar 

  8. Yang YL, Li XM (2000) The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 10:169–177

    Article  PubMed  CAS  Google Scholar 

  9. Yang Z, Quigley HA, Pease ME, Yang Y, Qian J, Valenta D, Zack DJ (2007) Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Invest Ophthalmol Vis Sci 48:5539–5548

    Article  PubMed  Google Scholar 

  10. Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ, Gariboldi M, Myers TG, Weinstein JN, Pommier Y, Fornace AJ Jr (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19:1673–1685

    PubMed  CAS  Google Scholar 

  11. Gu Z, Flemington C, Chittenden T, Zambetti GP (2000) ei24, a p53 response gene involved in growth suppression and apoptosis. Mol Cell Biol 20:233–241

    Article  PubMed  CAS  Google Scholar 

  12. Rideout HJ, Wang Q, Park DS, Stefanis L (2003) Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci 23:1237–1245

    PubMed  CAS  Google Scholar 

  13. Tezel G, Li LY, Patil RV, Wax MB (2001) TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 42:1787–1794

    PubMed  CAS  Google Scholar 

  14. Tezel G, Wax MB (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 20:8693–8700

    PubMed  CAS  Google Scholar 

  15. Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H, Miyawaki N (2001) Interleukin-1beta mediates ischemic injury in the rat retina. Exp Eye Res 73:661–667

    Article  PubMed  CAS  Google Scholar 

  16. Zhou X, Li F, Kong L, Tomita H, Li C, Cao W (2005) Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem 280:31240–31248

    Article  PubMed  CAS  Google Scholar 

  17. Elewa HF, Hilali H, Hess DC, Machado LS, Fagan SC (2006) Minocycline for short-term neuroprotection. Pharmacotherapy 26:515–521

    Article  PubMed  CAS  Google Scholar 

  18. Levkovitz Y, Mendlovich S, Riwkes S, Braw Y, Levkovitch-Verbin H, Gal G, Fennig S, Treves I, Kron S (2010) A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry 71(2):138–149

    Article  PubMed  CAS  Google Scholar 

  19. Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69:1404–1410

    Article  PubMed  CAS  Google Scholar 

  20. Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S (2006) Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 124:520–526

    Article  PubMed  CAS  Google Scholar 

  21. Baptiste DC, Powell KJ, Jollimore CA, Hamilton C, LeVatte TL, Archibald ML, Chauhan BC, Robertson GS, Kelly ME (2005) Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 134:575–582

    Article  PubMed  CAS  Google Scholar 

  22. Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    PubMed  Google Scholar 

  23. Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230

    Article  PubMed  CAS  Google Scholar 

  24. Buttini M, Appel K, Sauter A, Gebicke-Haerter PJ, Boddeke HW (1996) Expression of tumor necrosis factor alpha after focal cerebral ischaemia in the rat. Neuroscience 71:1–16

    Article  PubMed  CAS  Google Scholar 

  25. Martin-Villalba A, Hahne M, Kleber S, Vogel J, Falk W, Schenkel J, Krammer PH (2001) Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ 8:679–686

    Article  PubMed  CAS  Google Scholar 

  26. Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25:1481–1488

    PubMed  CAS  Google Scholar 

  27. Martin-Villalba A, Herr I, Jeremias I, Hahne M, Brandt R, Vogel J, Schenkel J, Herdegen T, Debatin KM (1999) CD95 ligand (Fas-L/APO-1 L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 19:3809–3817

    PubMed  CAS  Google Scholar 

  28. Ju KR, Kim HS, Kim JH, Lee NY, Park CK (2006) Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension. Brain Res 1122:209–221

    Article  PubMed  CAS  Google Scholar 

  29. Tezel G, Yang X, Yang J, Wax MB (2004) Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996:202–212

    Article  PubMed  CAS  Google Scholar 

  30. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95:15769–15774

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Metz LM, Yong VW, Bell RB, Yeung M, Patry DG, Mitchell JR (2008) Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci 35:185–191

    PubMed  CAS  Google Scholar 

  32. Pattison LR, Kotter MR, Fraga D, Bonelli RM (2006) Apoptotic cascades as possible targets for inhibiting cell death in Huntington's disease. J Neurol 253:1137–1142

    Article  PubMed  CAS  Google Scholar 

  33. Kriz J, Nguyen MD, Julien JP (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10:268–278

    Article  PubMed  CAS  Google Scholar 

  34. Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196:168–179

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci U S A 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  36. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z (2004) Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem 279:19948–19954

    Article  PubMed  CAS  Google Scholar 

  38. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21:2580–2588

    PubMed  CAS  Google Scholar 

  39. Yuan L, Neufeld AH (2001) Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 64:523–532

    Article  PubMed  CAS  Google Scholar 

  40. Naskar R, Wissing M, Thanos S (2002) Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 43:2962–2968

    PubMed  Google Scholar 

  41. Chauhan BC, LeVatte TL, Jollimore CA, Yu PK, Reitsamer HA, Kelly ME, Yu DY, Tremblay F, Archibald ML (2004) Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 45:144–152

    Article  PubMed  Google Scholar 

  42. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2 J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Levkovitch-Verbin.

Additional information

Supported in part by the Claire & Amadee Maratier Institute for the study of blindness and visual disorders, Sackler School of Medicine, Tel-Aviv University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levkovitch-Verbin, H., Spierer, O., Vander, S. et al. Similarities and differences between primary and secondary degeneration of the optic nerve and the effect of minocycline. Graefes Arch Clin Exp Ophthalmol 249, 849–857 (2011). https://doi.org/10.1007/s00417-010-1608-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-010-1608-2

Keywords

Navigation