Skip to main content

Advertisement

Log in

Traumatic optic neuropathy: a review of current studies

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available from the corresponding open web (http://www.metabolomicsworkbench.org).

Code availability

Not applicable.

References

  1. Acheson JF (2004) Optic nerve disorders: role of canal and nerve sheath decompression surgery. Eye (Lond) 18:1169–1174. https://doi.org/10.1038/sj.eye.6701559

    Article  CAS  Google Scholar 

  2. Aguayo AJ, Rasminsky M, Bray GM et al (1991) Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos Trans R Soc Lond B Biol Sci 331:337–343. https://doi.org/10.1098/rstb.1991.0025

    Article  CAS  PubMed  Google Scholar 

  3. al-Qurainy IA, Stassen LF, Dutton GN et al (1991) The characteristics of midfacial fractures and the association with ocular injury: a prospective study. Br J Oral Maxillofac Surg 29:291–301. https://doi.org/10.1016/0266-4356(91)90114-k

    Article  CAS  PubMed  Google Scholar 

  4. Alderson P, Roberts I (2005) Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev 2005:CD00196. https://doi.org/10.1002/14651858.CD000196.pub2

    Article  Google Scholar 

  5. Arcuri J, Hegarty S, He Z et al (2021) Lipidomics dataset of PTEN deletion-induced optic nerve regeneration mouse model. Data Brief 34:106–699. https://doi.org/10.1016/j.dib.2020.106699

    Article  CAS  Google Scholar 

  6. Arcuri J, Liu Y, Lee RK et al (2020) Lipid profile dataset of optogenetics induced optic nerve regeneration. Data Brief 31:106–1. https://doi.org/10.1016/j.dib.2020.106001

    Article  Google Scholar 

  7. Bae HW, Lee N, Seong GJ et al (2016) Protective effect of etanercept, an inhibitor of tumor necrosis factor-α, in a rat model of retinal ischemia. BMC Ophthalmol 16:75. https://doi.org/10.1186/s12886-016-0262-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barber A, Farmer K, Martin KR et al (2017) Retinal regeneration mechanisms linked to multiple cancer molecules: a therapeutic conundrum. Prog Retin Eye Res 56:19–31. https://doi.org/10.1016/j.preteyeres.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  9. Bazinet RP, Layé S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15:771–785. https://doi.org/10.1038/nrn3820

    Article  CAS  PubMed  Google Scholar 

  10. Beck RW, Cleary PA, Anderson MM Jr et al (1992) A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 326:581–588. https://doi.org/10.1056/nejm199202273260901

    Article  CAS  PubMed  Google Scholar 

  11. Benowitz LI, Popovich PG (2011) Inflammation and axon regeneration. Curr Opin Neurol 24:577–583. https://doi.org/10.1097/WCO.0b013e32834c208d

    Article  CAS  PubMed  Google Scholar 

  12. Berne JD, Cook A, Rowe SA et al (2010) A multivariate logistic regression analysis of risk factors for blunt cerebrovascular injury. J Vasc Surg 51:57–64. https://doi.org/10.1016/j.jvs.2009.08.071

    Article  PubMed  Google Scholar 

  13. Berry M, Ahmed Z, Lorber B et al (2008) Regeneration of axons in the visual system. Restor Neurol Neurosci 26:147–174

    PubMed  Google Scholar 

  14. Bhattacharyya A, Watson FL, Bradlee TA et al (1997) Trk receptors function as rapid retrograde signal carriers in the adult nervous system. J Neurosci 17:7007–7016. https://doi.org/10.1523/jneurosci.17-18-07007.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blanco RE, Vega-Meléndez GS, De La Rosa-Reyes V et al (2019) Application of CNTF or FGF-2 increases the number of M2-like macrophages after optic nerve injury in adult Rana pipiens. PLoS ONE 14:e0209733. https://doi.org/10.1371/journal.pone.0209733

    Article  PubMed  PubMed Central  Google Scholar 

  16. Böcker-Meffert S, Rosenstiel P, Röhl C et al (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43:2021–2026

    PubMed  Google Scholar 

  17. Boyack I, McPhee D, Rose Y et al (2016) Posttraumatic pneumatization of the optic sheath. Am J Emerg Med 34:1911.e1913-1914. https://doi.org/10.1016/j.ajem.2016.01.018

    Article  Google Scholar 

  18. Bracken MB, Shepard MJ, Collins WF et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411. https://doi.org/10.1056/nejm199005173222001

    Article  CAS  PubMed  Google Scholar 

  19. Bracken MB, Shepard MJ, Holford TR et al (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604

    Article  CAS  Google Scholar 

  20. Bradke F, Fawcett JW, Spira ME (2012) Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 13:183–193. https://doi.org/10.1038/nrn3176

    Article  CAS  PubMed  Google Scholar 

  21. Braughler JM, Hall ED, Means ED et al (1987) Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J Neurosurg 67:102–105. https://doi.org/10.3171/jns.1987.67.1.0102

    Article  CAS  PubMed  Google Scholar 

  22. Cabrilo I, Dorward NL (2020) Endoscopic endonasal intracanalicular optic nerve decompression: how I do it. Acta Neurochir (Wien) 162:2129–2134. https://doi.org/10.1007/s00701-020-04476-6

    Article  Google Scholar 

  23. Cen LP, Luo JM, Geng Y et al (2012) Long-term survival and axonal regeneration of retinal ganglion cells after optic nerve transection and a peripheral nerve graft. NeuroReport 23:692–697. https://doi.org/10.1097/WNR.0b013e328355f1d6

    Article  PubMed  Google Scholar 

  24. Chang KC, M Bian, X Xia et al (2021) Posttranslational modification of Sox11 regulates RGC survival and axon regeneration. eNeuro 8(1):ENEURO.0358–20.2020. https://doi.org/10.1523/eneuro.0358-20.2020

  25. Chen C, Selva D, Floreani S et al (2006) Endoscopic optic nerve decompression for traumatic optic neuropathy: an alternative. Otolaryngol Head Neck Surg 135:155–157. https://doi.org/10.1016/j.otohns.2005.03.056

    Article  PubMed  Google Scholar 

  26. Chen F, Zuo K, Feng S et al (2014) A modified surgical procedure for endoscopic optic nerve decompression for the treatment of traumatic optic neuropathy. N Am J Med Sci 6:270–273. https://doi.org/10.4103/1947-2714.134372

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen H, Weber AJ (2004) Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats. Brain Res 1011:99–106. https://doi.org/10.1016/j.brainres.2004.03.024

    Article  CAS  PubMed  Google Scholar 

  28. Chen M, Jiang Y, Pang WH et al (2017) A 212 cases analysis of treatment for traumatic optic neuropathy by nasal endoscopic optic nerve decompression. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 31:1411–1414. https://doi.org/10.13201/j.issn.1001-1781.2017.18.008

    Article  CAS  PubMed  Google Scholar 

  29. Chen XJ, Zhang ZC, Wang XY et al (2020) The circular RNome of developmental retina in mice. Mol Ther Nucleic Acids 19:339–349. https://doi.org/10.1016/j.omtn.2019.11.016

    Article  CAS  PubMed  Google Scholar 

  30. Chou PI, Sadun AA, Chen YC et al (1996) Clinical experiences in the management of traumatic optic neuropathy. Neuro-Ophthalmology 16:325–336. https://doi.org/10.3109/01658109609044636

    Article  Google Scholar 

  31. Chung S, Rho S, Kim G et al (2016) Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med 37:1170–1180. https://doi.org/10.3892/ijmm.2016.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cogbill TH, Moore EE, Meissner M et al (1994) The spectrum of blunt injury to the carotid artery: a multicenter perspective. J Trauma 37:473–479. https://doi.org/10.1097/00005373-199409000-00024

    Article  CAS  PubMed  Google Scholar 

  33. Cohen A, Bray GM, Aguayo AJ (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. J Neurobiol 25:953–959. https://doi.org/10.1002/neu.480250805

    Article  CAS  PubMed  Google Scholar 

  34. Cui Q, So KF, Yip HK (1998) Major biological effects of neurotrophic factors on retinal ganglion cells in mammals. Biol Signals Recept 7:220–226. https://doi.org/10.1159/000014546

    Article  CAS  PubMed  Google Scholar 

  35. Cui Y, Liu C, Huang L et al (2021) Protective effects of intravitreal administration of mesenchymal stem cell-derived exosomes in an experimental model of optic nerve injury. Exp Cell Res 407:112792. https://doi.org/10.1016/j.yexcr.2021.112792

    Article  CAS  PubMed  Google Scholar 

  36. De Ganseman A, Lasudry J, Choufani G et al (2000) Intranasal endoscopic surgery in traumatic optic neuropathy–the Belgian experience. Acta Otorhinolaryngol Belg 54:175–177

    PubMed  Google Scholar 

  37. DeJulius CR, Bernardo-Colón A, Naguib S et al (2020) Microsphere antioxidant and sustained erythropoietin-R76E release functions cooperate to reduce traumatic optic neuropathy. J Control Release 329:726–773. https://doi.org/10.1016/j.jconrel.2020.10.010

    Article  CAS  Google Scholar 

  38. Dhaliwal SS, Sowerby LJ, Rotenberg BW (2016) Timing of endoscopic surgical decompression in traumatic optic neuropathy: a systematic review of the literature. Int Forum Allergy Rhinol 6:661–667. https://doi.org/10.1002/alr.21706

    Article  PubMed  Google Scholar 

  39. Di Polo A, Aigner LJ, Dunn RJ et al (1998) Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 95:3978–3983. https://doi.org/10.1073/pnas.95.7.3978

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diem R, Hobom M, Maier K et al (2003) Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 23:6993–7000. https://doi.org/10.1523/jneurosci.23-18-06993.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duan X, Qiao M, Bei F et al (2015) Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–1256. https://doi.org/10.1016/j.neuron.2015.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dvoriantchikova G, Santos AR, Saeed AM et al (2014) Putative role of protein kinase C in neurotoxic inflammation mediated by extracellular heat shock protein 70 after ischemia-reperfusion. J Neuroinflammation 11:81. https://doi.org/10.1186/1742-2094-11-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edwards P, Arango M, Balica L et al (2005) Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 365:1957–1959. https://doi.org/10.1016/s0140-6736(05)66552-x

    Article  PubMed  Google Scholar 

  44. Ellis JA, Goldstein H, Connolly ES Jr et al (2012) Carotid-cavernous fistulas. Neurosurg Focus 32:E9. https://doi.org/10.3171/2012.2.focus1223

    Article  PubMed  Google Scholar 

  45. Emanuelli E, Bignami M, Digilio E et al (2015) Post-traumatic optic neuropathy: our surgical and medical protocol. Eur Arch Otorhinolaryngol 272:3301–3309. https://doi.org/10.1007/s00405-014-3408-5

    Article  CAS  PubMed  Google Scholar 

  46. Entezari M, Esmaeili M, Yaseri M (2014) A pilot study of the effect of intravenous erythropoetin on improvement of visual function in patients with recent indirect traumatic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 252:1309–1313. https://doi.org/10.1007/s00417-014-2691-6

    Article  CAS  PubMed  Google Scholar 

  47. Entezari M, Rajavi Z, Sedighi N et al (2007) High-dose intravenous methylprednisolone in recent traumatic optic neuropathy; a randomized double-masked placebo-controlled clinical trial. Graefes Arch Clin Exp Ophthalmol 245:1267–1271. https://doi.org/10.1007/s00417-006-0441-0

    Article  CAS  PubMed  Google Scholar 

  48. Faberowski N, Stefansson E, Davidson RC (1989) Local hypothermia protects the retina from ischemia. A quantitative study in the rat. Invest Ophthalmol Vis Sci 30:2309–2313

    CAS  PubMed  Google Scholar 

  49. Feng L, Z Puyang, H Chen et al (2017) Overexpression of brain-derived neurotrophic factor protects large retinal ganglion cells after optic nerve crush in mice. eNeuro 4(1):ENEURO.0331–16.2016. https://doi.org/10.1523/eneuro.0331-16.2016

  50. Feng X, Chen P, Zhao X et al (2021) Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol 21:26. https://doi.org/10.1186/s12886-020-01795-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flachsbarth K, Jankowiak W, Kruszewski K et al (2018) Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp Eye Res 176:258–265. https://doi.org/10.1016/j.exer.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  52. Fontaine V, Mohand-Said S, Hanoteau N et al (2002) Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22:Rc216. https://doi.org/10.1523/JNEUROSCI.22-07-j0001.2002

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fournier AE, Beer J, Arregui CO et al (1997) Brain-derived neurotrophic factor modulates GAP-43 but not T alpha1 expression in injured retinal ganglion cells of adult rats. J Neurosci Res 47:561–572

    Article  CAS  Google Scholar 

  54. Fu A, Shi X, Zhang H et al (2017) Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front Pharmacol 8:241. https://doi.org/10.3389/fphar.2017.00241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu QL, Wu W, Wang H et al (2008) Up-regulated endogenous erythropoietin/erythropoietin receptor system and exogenous erythropoietin rescue retinal ganglion cells after chronic ocular hypertension. Cell Mol Neurobiol 28:317–329. https://doi.org/10.1007/s10571-007-9155-z

    Article  CAS  PubMed  Google Scholar 

  56. Galindo-Romero C, Valiente-Soriano FJ, Jiménez-López M et al (2013) Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Invest Ophthalmol Vis Sci 54:974–985. https://doi.org/10.1167/iovs.12-11207

    Article  CAS  PubMed  Google Scholar 

  57. Gao H, Qiao X, Hefti F et al (1997) Elevated mRNA expression of brain-derived neurotrophic factor in retinal ganglion cell layer after optic nerve injury. Invest Ophthalmol Vis Sci 38:1840–1847

    CAS  PubMed  Google Scholar 

  58. Gao Y, Li J, Ma H et al (2021) Endoscopic trans-ethmosphenoid optic canal decompression is an optimal choice to save vision for indirect traumatic optic neuropathy. Acta Ophthalmol. https://doi.org/10.1111/aos.14951

    Article  PubMed  Google Scholar 

  59. Geng Y, Lu Z, Guan J et al (2021) Microglia/Macrophages and CD4(+)CD25(+) T cells enhance the ability of injury-activated lymphocytes to reduce traumatic optic neuropathy in vitro. Front Immunol 12:687–898. https://doi.org/10.3389/fimmu.2021.687898

    Article  CAS  Google Scholar 

  60. Giza CC, Hovda DA (2001) The neurometabolic cascade of concussion. J Athl Train 36:228–235

    PubMed  PubMed Central  Google Scholar 

  61. Gogela SL, Zimmer LA, Keller JT et al (2018) Refining operative strategies for optic nerve decompression: a morphometric analysis of transcranial and endoscopic endonasal techniques using clinical parameters. Oper Neurosurg (Hagerstown) 14:295–302. https://doi.org/10.1093/ons/opx093

    Article  Google Scholar 

  62. Goldberg JL (2003) How does an axon grow? Genes Dev 17:941–958. https://doi.org/10.1101/gad.1062303

    Article  CAS  PubMed  Google Scholar 

  63. Gupta AK, Gupta AK, Gupta A et al (2007) Traumatic optic neuropathy in pediatric population: early intervention or delayed intervention? Int J Pediatr Otorhinolaryngol 71:559–562. https://doi.org/10.1016/j.ijporl.2006.11.018

    Article  PubMed  Google Scholar 

  64. Gupta D, Gadodia M (2018) Transnasal endoscopic optic nerve decompression in post traumatic optic neuropathy. Indian J Otolaryngol Head Neck Surg 70:49–52. https://doi.org/10.1007/s12070-017-1211-5

    Article  PubMed  Google Scholar 

  65. Guy WM, Soparkar CN, Alford EL et al (2014) Traumatic optic neuropathy and second optic nerve injuries. JAMA Ophthalmol 132:567–571. https://doi.org/10.1001/jamaophthalmol.2014.82

    Article  PubMed  Google Scholar 

  66. Guyon JJ, Brant-Zawadzki M, Seiff SR (1984) CT demonstration of optic canal fractures. AJR Am J Roentgenol 143:1031–1034. https://doi.org/10.2214/ajr.143.5.1031

    Article  CAS  PubMed  Google Scholar 

  67. Haddad-Mashadrizeh A, Bahrami AR, Matin MM et al (2013) Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation 20:165–176. https://doi.org/10.1111/xen.12033

    Article  PubMed  Google Scholar 

  68. Hall ED (1992) The neuroprotective pharmacology of methylprednisolone. J Neurosurg 76:13–22. https://doi.org/10.3171/jns.1992.76.1.0013

    Article  CAS  PubMed  Google Scholar 

  69. Hambright D, Park KY, Brooks M et al (2012) Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 18:920–936

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Han F, Huo Y, Huang CJ et al (2015) MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 1611:65–73. https://doi.org/10.1016/j.brainres.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  71. He Z, Li Q, Yuan J et al (2015) Evaluation of transcranial surgical decompression of the optic canal as a treatment option for traumatic optic neuropathy. Clin Neurol Neurosurg 134:130–135. https://doi.org/10.1016/j.clineuro.2015.04.023

    Article  PubMed  Google Scholar 

  72. He ZH, Lan ZB, Xiong A et al (2016) Endoscopic decompression of the optic canal for traumatic optic neuropathy. Chin J Traumatol 19:330–332. https://doi.org/10.1016/j.cjtee.2016.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  73. Holmes MD, Sires BS (2004) Flash visual evoked potentials predict visual outcome in traumatic optic neuropathy. Ophthalmic Plast Reconstr Surg 20:342–346. https://doi.org/10.1097/01.iop.0000134272.55294.4c

    Article  PubMed  Google Scholar 

  74. Holt GR, Holt JE (1983) Incidence of eye injuries in facial fractures: an analysis of 727 cases. Otolaryngol Head Neck Surg 91:276–279. https://doi.org/10.1177/019459988309100313

    Article  CAS  PubMed  Google Scholar 

  75. Horiguchi K, Murai H, Hasegawa Y et al (2010) Endoscopic endonasal trans-sphenoidal optic nerve decompression for traumatic optic neuropathy–technical note. Neurol Med Chir (Tokyo) 50:518–522. https://doi.org/10.2176/nmc.50.518

    Article  Google Scholar 

  76. Huang J, Chen X, Wang Z et al (2020) Selection and prognosis of optic canal decompression for traumatic optic neuropathy. World Neurosurg 138:e564–e578. https://doi.org/10.1016/j.wneu.2020.03.007

    Article  PubMed  Google Scholar 

  77. Jacquesson T, Abouaf L, Berhouma M et al (2014) How I do it: the endoscopic endonasal optic nerve and orbital apex decompression. Acta Neurochir (Wien) 156:1891–1896. https://doi.org/10.1007/s00701-014-2199-1

    Article  Google Scholar 

  78. Jehle T, Meschede W, Dersch R et al (2010) Erythropoietin protects retinal ganglion cells and visual function after ocular ischemia and optic nerve compression. Ophthalmologe 107:347–353. https://doi.org/10.1007/s00347-009-2030-1

    Article  CAS  PubMed  Google Scholar 

  79. Jelkmann W, Metzen E (1996) Erythropoietin in the control of red cell production. Ann Anat 178:391–403. https://doi.org/10.1016/s0940-9602(96)80124-5

    Article  CAS  PubMed  Google Scholar 

  80. Jiang RS, Hsu CY, Shen BH (2001) Endoscopic optic nerve decompression for the treatment of traumatic optic neuropathy. Rhinology 39:71–74

    CAS  PubMed  Google Scholar 

  81. Joseph MP, Lessell S, Rizzo J et al (1990) Extracranial optic nerve decompression for traumatic optic neuropathy. Arch Ophthalmol 108:1091–1093. https://doi.org/10.1001/archopht.1990.01070100047032

    Article  CAS  PubMed  Google Scholar 

  82. Junyi L, Na L, Yan J (2015) Mesenchymal stem cells secrete brain-derived neurotrophic factor and promote retinal ganglion cell survival after traumatic optic neuropathy. J Craniofac Surg 26:548–552. https://doi.org/10.1097/scs.0000000000001348

    Article  PubMed  Google Scholar 

  83. Kallela I, Hyrkäs T, Paukku P et al (1994) Blindness after maxillofacial blunt trauma. Evaluation of candidates for optic nerve decompression surgery. J Craniomaxillofac Surg 22:220–225. https://doi.org/10.1016/s1010-5182(05)80561-x

    Article  CAS  PubMed  Google Scholar 

  84. Kaneko A, Kiryu-Seo S, Matsumoto S et al (2017) Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury. Cell Death Dis 8:e2847. https://doi.org/10.1038/cddis.2017.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kang Z, Li J, Zou Y et al (2013) Diagnosis and treatment of traumatic optic neuropathy with carotid artery cavernous segment pseudoaneurysm. Laryngoscope 123:2591–2597. https://doi.org/10.1002/lary.24013

    Article  PubMed  Google Scholar 

  86. Kashkouli MB, Pakdel F, Sanjari MS et al (2011) Erythropoietin: a novel treatment for traumatic optic neuropathy-a pilot study. Graefes Arch Clin Exp Ophthalmol 249:731–736. https://doi.org/10.1007/s00417-010-1534-3

    Article  CAS  PubMed  Google Scholar 

  87. Kashkouli MB, Yousefi S, Nojomi M et al (2018) Traumatic optic neuropathy treatment trial (TONTT): open label, phase 3, multicenter, semi-experimental trial. Graefes Arch Clin Exp Ophthalmol 256:209–218. https://doi.org/10.1007/s00417-017-3816-5

    Article  PubMed  Google Scholar 

  88. Kelishadi SS, Zeiderman MR, Chopra K et al (2019) Facial fracture patterns associated with traumatic optic neuropathy. Craniomaxillofac Trauma Reconstr 12:39–44. https://doi.org/10.1055/s-0038-1641172

    Article  PubMed  Google Scholar 

  89. Kermer P, Klöcker N, Labes M et al (2000) Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 20:2–8

    Article  CAS  Google Scholar 

  90. Kim HG, Heo H, Sung MS et al (2019) Carnosine decreases retinal ganglion cell death in a mouse model of optic nerve crushing. Neurosci Lett 711:134431. https://doi.org/10.1016/j.neulet.2019.134431

    Article  CAS  PubMed  Google Scholar 

  91. King CE, Rodger J, Bartlett C et al (2007) Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection. Exp Neurol 205:48–55. https://doi.org/10.1016/j.expneurol.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  92. Kohli GS and BC Patel (2020) Carotid cavernous fistula. In: StatPearls (Internet). Treasure Island (FL). Available via StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535409/

  93. Kole C, Brommer B, Nakaya N et al (2020) Activating transcription factor 3 (ATF3) protects retinal ganglion cells and promotes functional preservation after optic nerve crush. Invest Ophthalmol Vis Sci 61:31. https://doi.org/10.1167/iovs.61.2.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kong DS, Shin HJ, Kim HY et al (2011) Endoscopic optic canal decompression for compressive optic neuropathy. J Clin Neurosci 18:1541–1545. https://doi.org/10.1016/j.jocn.2011.02.042

    Article  PubMed  Google Scholar 

  95. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381. https://doi.org/10.1126/science.2326648

    Article  CAS  PubMed  Google Scholar 

  96. Kretz A, Happold CJ, Marticke JK et al (2005) Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell Neurosci 29:569–579. https://doi.org/10.1016/j.mcn.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  97. Kumaran AM, Sundar G, Chye LT (2015) Traumatic optic neuropathy: a review. Craniomaxillofac Trauma Reconstr 8:31–41. https://doi.org/10.1055/s-0034-1393734

    Article  PubMed  Google Scholar 

  98. Lee V, Ford RL, Xing W et al (2010) Surveillance of traumatic optic neuropathy in the UK. Eye (Lond) 24:240–250. https://doi.org/10.1038/eye.2009.79

    Article  CAS  Google Scholar 

  99. Leibinger M, Müller A, Andreadaki A et al (2009) Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci 29:14334–14341. https://doi.org/10.1523/jneurosci.2770-09.2009

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lessell S (1992) Corticosteroid treatment of acute optic neuritis. N Engl J Med 326:634–635. https://doi.org/10.1056/nejm199202273260909

    Article  CAS  PubMed  Google Scholar 

  101. Levin LA, Baker RS (2003) Management of traumatic optic neuropathy. J Neuroophthalmol 23:72–75. https://doi.org/10.1097/00041327-200303000-00013

    Article  PubMed  Google Scholar 

  102. Levin LA, Beck RW, Joseph MP et al (1999) The treatment of traumatic optic neuropathy: the International Optic Nerve Trauma Study. Ophthalmology 106:1268–1277. https://doi.org/10.1016/s0161-6420(99)00707-1

    Article  CAS  PubMed  Google Scholar 

  103. Li H, Zhou B, Shi J et al (2008) Treatment of traumatic optic neuropathy: our experience of endoscopic optic nerve decompression. J Laryngol Otol 122:1325–1329. https://doi.org/10.1017/s0022215108002296

    Article  CAS  PubMed  Google Scholar 

  104. Li HJ, Pan YB, Sun ZL et al (2018) Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology 137:33–49. https://doi.org/10.1016/j.neuropharm.2018.04.028

    Article  CAS  PubMed  Google Scholar 

  105. Li HJ, Sun ZL, Yang XT et al (2017) Exploring optic nerve axon regeneration. Curr Neuropharmacol 15:861–873. https://doi.org/10.2174/1570159x14666161227150250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li J, Bai X, Guan X et al (2020) Treatment of optic canal decompression combined with umbilical cord mesenchymal stem (stromal) cells for indirect traumatic optic neuropathy: a phase 1 clinical trial. Ophthalmic Res. https://doi.org/10.1159/000512469

    Article  PubMed  Google Scholar 

  107. Li J, Ran QS, Hao B et al (2020) Transsphenoidal optic canal decompression for traumatic optic neuropathy assisted by a computed tomography image postprocessing technique. J Ophthalmol 2020:1870745. https://doi.org/10.1155/2020/1870745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li N, Wang F, Zhang Q et al (2018) Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss. Exp Eye Res 176:10–19. https://doi.org/10.1016/j.exer.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  109. Li X, Zhao S, Wang L (2018) Therapeutic effect of adipose-derived stem cell transplantation on optic nerve injury in rats. Mol Med Rep 17:2529–2534. https://doi.org/10.3892/mmr.2017.8103

    Article  CAS  PubMed  Google Scholar 

  110. Lin J, Hu W, Wu Q et al (2020) Analysis of prognostic factors for the indirect traumatic optic neuropathy underwent endoscopic transnasal optic canal decompression. J Craniofac Surg 31:1266–1269. https://doi.org/10.1097/scs.0000000000006443

    Article  PubMed  Google Scholar 

  111. Lin J, Hu W, Wu Q et al (2021) An evolving perspective of endoscopic transnasal optic canal decompression for traumatic optic neuropathy in clinic. Neurosurg Rev 44:19–27. https://doi.org/10.1007/s10143-019-01208-y

    Article  PubMed  Google Scholar 

  112. Lin MC, Cai YS (1989) Optic nerve decompression by the transorbital sphenoethmoidal approach. Zhonghua Yan Ke Za Zhi 25:235–237

    CAS  PubMed  Google Scholar 

  113. Lin TC, Hsu CC, Chien KH et al (2014) Retinal stem cells and potential cell transplantation treatments. J Chin Med Assoc 77:556–561. https://doi.org/10.1016/j.jcma.2014.08.001

    Article  PubMed  Google Scholar 

  114. Liu K, Tedeschi A, Park KK et al (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152. https://doi.org/10.1146/annurev-neuro-061010-113723

    Article  CAS  PubMed  Google Scholar 

  115. Liu Y, Yan H, Chen S et al (2015) Caspase-3 inhibitor Z-DEVD-FMK enhances retinal ganglion cell survival and vision restoration after rabbit traumatic optic nerve injury. Restor Neurol Neurosci 33:205–220. https://doi.org/10.3233/rnn-159001

    Article  CAS  PubMed  Google Scholar 

  116. Liu YF, Liang JJ, Ng TK et al (2021) CXCL5/CXCR2 modulates inflammation-mediated neural repair after optic nerve injury. Exp Neurol 341:113711. https://doi.org/10.1016/j.expneurol.2021.113711

    Article  CAS  PubMed  Google Scholar 

  117. Ma YJ, Yu B, Tu YH et al (2018) Prognostic factors of trans-ethmosphenoid optic canal decompression for indirect traumatic optic neuropathy. Int J Ophthalmol 11:1222–1226. https://doi.org/10.18240/ijo.2018.07.24

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mahapatra AK, Tandon DA (1993) Traumatic optic neuropathy in children: a prospective study. Pediatr Neurosurg 19:34–39. https://doi.org/10.1159/000120698

    Article  CAS  PubMed  Google Scholar 

  119. Martinez-Perez R, Albonette-Felicio T, Hardesty DA et al (2020) Outcome of the surgical decompression for traumatic optic neuropathy: a systematic review and meta-analysis. Neurosurg Rev. https://doi.org/10.1007/s10143-020-01260-z

    Article  PubMed  Google Scholar 

  120. Mauriello JA, DeLuca J, Krieger A et al (1992) Management of traumatic optic neuropathy–a study of 23 patients. Br J Ophthalmol 76:349–352. https://doi.org/10.1136/bjo.76.6.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mead B, Logan A, Berry M et al (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556. https://doi.org/10.1167/iovs.13-13045

    Article  CAS  PubMed  Google Scholar 

  122. Medeiros FA, Moura FC, Vessani RM et al (2003) Axonal loss after traumatic optic neuropathy documented by optical coherence tomography. Am J Ophthalmol 135:406–408. https://doi.org/10.1016/s0002-9394(02)02049-4

    Article  PubMed  Google Scholar 

  123. Mine S, Yamakami I, Yamaura A et al (1999) Outcome of traumatic optic neuropathy. Comparison between surgical and nonsurgical treatment. Acta Neurochir (Wien) 141:27–30. https://doi.org/10.1007/s007010050262

    Article  CAS  Google Scholar 

  124. Moore DL, Blackmore MG, Hu Y et al (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301. https://doi.org/10.1126/science.1175737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Morrison CS, Taylor HO, Sullivan SR (2013) Utilization of intraoperative 3D navigation for delayed reconstruction of orbitozygomatic complex fractures. J Craniofac Surg 24:e284-286. https://doi.org/10.1097/SCS.0b013e31828f2a71

    Article  PubMed  Google Scholar 

  126. Naguib S, Bernardo-Colón A, Rex TS (2021) Intravitreal injection worsens outcomes in a mouse model of indirect traumatic optic neuropathy from closed globe injury. Exp Eye Res 202:108369. https://doi.org/10.1016/j.exer.2020.108369

    Article  CAS  PubMed  Google Scholar 

  127. Nascimento-Dos-Santos G, de-Souza-Ferreira E, Lani R et al (2020) Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation of active mitochondria to the retina. Biochim Biophys Acta Mol Basis Dis 1866:165686. https://doi.org/10.1016/j.bbadis.2020.165686

    Article  CAS  PubMed  Google Scholar 

  128. Negishi H, Dezawa M, Oshitari T et al (2001) Optic nerve regeneration within artificial Schwann cell graft in the adult rat. Brain Res Bull 55:409–419. https://doi.org/10.1016/s0361-9230(01)00534-2

    Article  CAS  PubMed  Google Scholar 

  129. Le Nguyen Ngo MA, Wen YT, Ho YC et al (2019) Therapeutic effects of puerarin against anterior ischemic optic neuropathy through antiapoptotic and anti-inflammatory actions. Invest Ophthalmol Vis Sci 60:3481–3491. https://doi.org/10.1167/iovs.19-27129

    Article  CAS  Google Scholar 

  130. Nuesi R, Gallo RA, Dvoriantchikova G et al (2020) Lipidomics dataset of sonication-induced traumatic optic neuropathy in mice. Data Brief 29:105147. https://doi.org/10.1016/j.dib.2020.105147

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nuesi R, Gallo RA, Meehan SD et al (2020) Mitochondrial lipid profiling data of a traumatic optic neuropathy model. Data Brief 30:105649. https://doi.org/10.1016/j.dib.2020.105649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oh HJ, Yeo DG, Hwang SC (2018) Surgical treatment for traumatic optic neuropathy. Korean J Neurotrauma 14:55–60. https://doi.org/10.13004/kjnt.2018.14.2.55

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ohlsson M, Westerlund U, Langmoen IA et al (2004) Methylprednisolone treatment does not influence axonal regeneration or degeneration following optic nerve injury in the adult rat. J Neuroophthalmol 24:11–18. https://doi.org/10.1097/00041327-200403000-00003

    Article  PubMed  Google Scholar 

  134. Orticio LP (2003) The use of megadose corticosteroids in traumatic optic neuropathy: case studies. Insight 28:39–44 (quiz 45-36)

    PubMed  Google Scholar 

  135. Otani N, Wada K, Fuji K et al (2016) Usefulness of extradural optic nerve decompression via trans-superior orbital fissure approach for treatment of traumatic optic nerve injury: surgical procedures and techniques from experience with 8 consecutive patients. World Neurosurg 90:357–363. https://doi.org/10.1016/j.wneu.2016.03.013

    Article  PubMed  Google Scholar 

  136. Park KK, Liu K, Hu Y et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966. https://doi.org/10.1126/science.1161566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paza AO, Farah GJ, Passeri LA (2008) Traumatic carotid cavernous fistula associated with a mandibular fracture. Int J Oral Maxillofac Surg 37:86–89. https://doi.org/10.1016/j.ijom.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  138. Peng A, Li Y, Hu P et al (2011) Endoscopic optic nerve decompression for traumatic optic neuropathy in children. Int J Pediatr Otorhinolaryngol 75:992–998. https://doi.org/10.1016/j.ijporl.2011.05.004

    Article  PubMed  Google Scholar 

  139. Peng S, Shi Z, Su H et al (2016) Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice. Exp Eye Res 148:90–96. https://doi.org/10.1016/j.exer.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  140. Pernet V, Di Polo A (2006) Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain 129:1014–1026. https://doi.org/10.1093/brain/awl015

    Article  PubMed  Google Scholar 

  141. Pfenninger KH (2009) Plasma membrane expansion: a neuronʼs Herculean task. Nat Rev Neurosci 10:251–261. https://doi.org/10.1038/nrn2593

    Article  CAS  PubMed  Google Scholar 

  142. Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 50:357–371. https://doi.org/10.1016/j.plipres.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  143. Pirouzmand F (2012) Epidemiological trends of traumatic optic nerve injuries in the largest Canadian adult trauma center. J Craniofac Surg 23:516–520. https://doi.org/10.1097/SCS.0b013e31824cd4a7

    Article  PubMed  Google Scholar 

  144. Qin S, Zou Y, Zhang CL (2013) Cross-talk between KLF4 and STAT3 regulates axon regeneration. Nat Commun 4:2633. https://doi.org/10.1038/ncomms3633

    Article  CAS  PubMed  Google Scholar 

  145. Rajiniganth MG, Gupta AK, Gupta A et al (2003) Traumatic optic neuropathy: visual outcome following combined therapy protocol. Arch Otolaryngol Head Neck Surg 129:1203–1206. https://doi.org/10.1001/archotol.129.11.1203

    Article  CAS  PubMed  Google Scholar 

  146. Rashad MA, Abdel Latif AAM, Mostafa HA et al (2018) Visual-evoked-response-supported outcome of intravitreal erythropoietin in management of indirect traumatic optic neuropathy. J Ophthalmol 2018:2750632. https://doi.org/10.1155/2018/2750632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rey-Funes M, Larrayoz IM, Contartese DS et al (2017) Hypothermia prevents retinal damage generated by optic nerve trauma in the rat. Sci Rep 7:6966. https://doi.org/10.1038/s41598-017-07294-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rigante L, Evins AI, Berra LV et al (2015) Optic nerve decompression through a supraorbital approach. J Neurol Surg B Skull Base 76:239–247. https://doi.org/10.1055/s-0034-1543964

    Article  PubMed  PubMed Central  Google Scholar 

  149. Robicsek O, Ene HM, Karry R et al (2018) Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr Bull 44:432–442. https://doi.org/10.1093/schbul/sbx077

    Article  PubMed  Google Scholar 

  150. Rodríguez-Muela N, Boya P (2012) Axonal damage, autophagy and neuronal survival. Autophagy 8:286–288. https://doi.org/10.4161/auto.8.2.18982

    Article  CAS  PubMed  Google Scholar 

  151. Ropposch T, Steger B, Meço C et al (2013) The effect of steroids in combination with optic nerve decompression surgery in traumatic optic neuropathy. Laryngoscope 123:1082–1086. https://doi.org/10.1002/lary.23845

    Article  CAS  PubMed  Google Scholar 

  152. Salido EM, Dorfman D, Bordone M et al (2013) Global and ocular hypothermic preconditioning protect the rat retina from ischemic damage. PLoS ONE 8:e61656. https://doi.org/10.1371/journal.pone.0061656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sarkar S, Ravikumar B, Floto RA et al (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56. https://doi.org/10.1038/cdd.2008.110

    Article  CAS  PubMed  Google Scholar 

  154. Sauerland S, Nagelschmidt M, Mallmann P et al (2000) Risks and benefits of preoperative high dose methylprednisolone in surgical patients: a systematic review. Drug Saf 23:449–461. https://doi.org/10.2165/00002018-200023050-00007

    Article  CAS  PubMed  Google Scholar 

  155. Schramm A, Suarez-Cunqueiro MM, Rücker M et al (2009) Computer-assisted therapy in orbital and mid-facial reconstructions. Int J Med Robot 5:111–124. https://doi.org/10.1002/rcs.245

    Article  CAS  PubMed  Google Scholar 

  156. Shabanzadeh AP, Charish J, Tassew NG et al (2021) Cholesterol synthesis inhibition promotes axonal regeneration in the injured central nervous system. Neurobiol Dis 150:105259. https://doi.org/10.1016/j.nbd.2021.105259

    Article  CAS  PubMed  Google Scholar 

  157. Shi W, Wang HZ, Song WX et al (2013) Axonal loss and blood flow disturbances in the natural course of indirect traumatic optic neuropathy. Chin Med J (Engl) 126:1292–1297

    Google Scholar 

  158. Silva RV, Oliveira JT, Santos BLR et al (2017) Long-chain omega-3 fatty acids supplementation accelerates nerve regeneration and prevents neuropathic pain behavior in mice. Front Pharmacol 8:723. https://doi.org/10.3389/fphar.2017.00723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Singman EL, Daphalapurkar N, White H et al (2016) Indirect traumatic optic neuropathy. Mil Med Res 3:2. https://doi.org/10.1186/s40779-016-0069-2

    Article  PubMed  PubMed Central  Google Scholar 

  160. Song X, Wang Y, Li L et al (2021) Predictors for surgeries with the endoscope-navigation system for traumatic optic neuropathy and its clinical assessment. J Craniofac Surg. https://doi.org/10.1097/scs.0000000000007749

    Article  PubMed  PubMed Central  Google Scholar 

  161. Song Y, Li H, Ma Y et al (2013) Analysis of prognostic factors of endoscopic optic nerve decompression in traumatic blindness. Acta Otolaryngol 133:1196–1200. https://doi.org/10.3109/00016489.2013.822556

    Article  PubMed  Google Scholar 

  162. Stark DT, Anderson DMG, Kwong JMK et al (2018) Optic nerve regeneration after crush remodels the injury site: molecular insights from imaging mass spectrometry. Invest Ophthalmol Vis Sci 59:212–222. https://doi.org/10.1167/iovs.17-22509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Steinsapir KD (1999) Traumatic optic neuropathy. Curr Opin Ophthalmol 10:340–342. https://doi.org/10.1097/00055735-199910000-00011

    Article  CAS  PubMed  Google Scholar 

  164. Steinsapir KD, Goldberg RA (2011) Traumatic optic neuropathy: an evolving understanding. Am J Ophthalmol 151:928-933.e922. https://doi.org/10.1016/j.ajo.2011.02.007

    Article  PubMed  Google Scholar 

  165. Steinsapir KD, Goldberg RA, Sinha S et al (2000) Methylprednisolone exacerbates axonal loss following optic nerve trauma in rats. Restor Neurol Neurosci 17:157–163

    CAS  PubMed  Google Scholar 

  166. Stunkel L, Van Stavern GP (2018) Steroid treatment of optic neuropathies. Asia Pac J Ophthalmol (Phila) 7:218–228. https://doi.org/10.22608/apo.2018127

    Article  CAS  Google Scholar 

  167. Sullivan TA, Geisert EE, Templeton JP et al (2012) Dose-dependent treatment of optic nerve crush by exogenous systemic mutant erythropoietin. Exp Eye Res 96:36–41. https://doi.org/10.1016/j.exer.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sun J, Cai X, Zou W et al (2021) Outcome of endoscopic optic nerve decompression for traumatic optic neuropathy. Ann Otol Rhinol Laryngol 130:56–59. https://doi.org/10.1177/0003489420939594

    Article  PubMed  Google Scholar 

  169. Tabatabaei SA, Soleimani M, Alizadeh M et al (2011) Predictive value of visual evoked potentials, relative afferent pupillary defect, and orbital fractures in patients with traumatic optic neuropathy. Clin Ophthalmol 5:1021–1026. https://doi.org/10.2147/opth.s21409

    Article  PubMed  PubMed Central  Google Scholar 

  170. Tao W, Dvoriantchikova G, Tse BC et al (2017) A novel mouse model of traumatic optic neuropathy using external ultrasound energy to achieve focal, indirect optic nerve injury. Sci Rep 7:11779. https://doi.org/10.1038/s41598-017-12225-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tezel G, Yang X, Yang J et al (2004) Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996:202–212. https://doi.org/10.1016/j.brainres.2003.10.029

    Article  CAS  PubMed  Google Scholar 

  172. Thaker A, Tandon DA, Mahapatra AK (2009) Surgery for optic nerve injury: should nerve sheath incision supplement osseous decompression? Skull Base 19:263–271. https://doi.org/10.1055/s-0028-1114299

    Article  PubMed  PubMed Central  Google Scholar 

  173. Thomas CN, Bernardo-Colón A, Courtie E et al (2021) Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci Rep 11:16839. https://doi.org/10.1038/s41598-021-96107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tian Y, Wang Y, Liu Z et al (2020) Isolated-check visual evoked potential: a more sensitive tool to detect traumatic optic neuropathy after orbital fracture. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-020-04895-2

    Article  PubMed  Google Scholar 

  175. Trzeciecka A, Carmy T, Hackam AS et al (2019) Lipid profiling dataset of the Wnt3a-induced optic nerve regeneration. Data Brief 25:103966. https://doi.org/10.1016/j.dib.2019.103966

    Article  PubMed  PubMed Central  Google Scholar 

  176. Trzeciecka A, Stark DT, Kwong JMK et al (2019) Comparative lipid profiling dataset of the inflammation-induced optic nerve regeneration. Data Brief 24:103950. https://doi.org/10.1016/j.dib.2019.103950

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tse BC, Dvoriantchikova G, Tao W et al (2020) Mitochondrial targeted therapy with elamipretide (MTP-131) as an adjunct to tumor necrosis factor inhibition for traumatic optic neuropathy in the acute setting. Exp Eye Res 199:108178. https://doi.org/10.1016/j.exer.2020.108178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tse BC, Dvoriantchikova G, Tao W et al (2018) Tumor necrosis factor inhibition in the acute management of traumatic optic neuropathy. Invest Ophthalmol Vis Sci 59:2905–2912. https://doi.org/10.1167/iovs.18-24431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Udhay P, Bhattacharjee K, Ananthnarayanan P et al (2019) Computer-assisted navigation in orbitofacial surgery. Indian J Ophthalmol 67:995–1003. https://doi.org/10.4103/ijo.IJO_807_18

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ustymowicz A, Mariak Z, Obuchowska I et al (2009) Blood flow disturbances in the central retinal artery in patients with traumatic optic neuropathy. Med Sci Monit 15:Cr366-371

    PubMed  Google Scholar 

  181. Vance JE, Campenot RB, Vance DE (2000) The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta 1486:84–96. https://doi.org/10.1016/s1388-1981(00)00050-0

    Article  CAS  PubMed  Google Scholar 

  182. Venters HD, Dantzer R, Kelley KW (2000) A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 23:175–180. https://doi.org/10.1016/s0166-2236(99)01533-7

    Article  CAS  PubMed  Google Scholar 

  183. Wang DH, Zheng CQ, Qian J et al (2008) Endoscopic optic nerve decompression for the treatment of traumatic optic nerve neuropathy. ORL J Otorhinolaryngol Relat Spec 70:130–133. https://doi.org/10.1159/000114537

    Article  PubMed  Google Scholar 

  184. Wang LJ, Liu LP, Gu XL et al (2018) Implantation of adipose-derived stem cells cures the optic nerve injury on rats through inhibiting the expression of inflammation factors in the TLR4 signaling pathway. Eur Rev Med Pharmacol Sci 22:1196–1202. https://doi.org/10.26355/eurrev_201803_14458

    Article  PubMed  Google Scholar 

  185. Wang R, Sun Q, Xia F et al (2017) Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush. Exp Eye Res 159:49–57. https://doi.org/10.1016/j.exer.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  186. Wang X, Wu W, Zhang H et al (2017) Endoscopic optic nerve decompression through supraorbital keyhole extradural approach: a cadaveric study. Turk Neurosurg 27:212–216. https://doi.org/10.5137/1019-5149.jtn.15298-15.1

    Article  PubMed  Google Scholar 

  187. Weishaupt JH, Rohde G, Pölking E et al (2004) Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 45:1514–1522. https://doi.org/10.1167/iovs.03-1039

    Article  PubMed  Google Scholar 

  188. Wen YT, Zhang JR, Kapupara K et al (2019) mTORC2 activation protects retinal ganglion cells via Akt signaling after autophagy induction in traumatic optic nerve injury. Exp Mol Med 51:1–11. https://doi.org/10.1038/s12276-019-0298-z

    Article  CAS  PubMed  Google Scholar 

  189. Wladis EJ, Aakalu VK, Sobel RK et al (2020) Interventions for indirect traumatic optic neuropathy: a report by the American Academy of Ophthalmology. Ophthalmology. https://doi.org/10.1016/j.ophtha.2020.10.038

    Article  PubMed  Google Scholar 

  190. Wohlrab TM, Maas S, de Carpentier JP (2002) Surgical decompression in traumatic optic neuropathy. Acta Ophthalmol Scand 80:287–293. https://doi.org/10.1034/j.1600-0420.2002.800311.x

    Article  PubMed  Google Scholar 

  191. Wolin MJ, Lavin PJ (1990) Spontaneous visual recovery from traumatic optic neuropathy after blunt head injury. Am J Ophthalmol 109:430–435. https://doi.org/10.1016/s0002-9394(14)74609-4

    Article  CAS  PubMed  Google Scholar 

  192. Xie D, Yu H, Ju J et al (2017) The outcome of endoscopic optic nerve decompression for bilateral traumatic optic neuropathy. J Craniofac Surg 28:1024–1026. https://doi.org/10.1097/scs.0000000000003743

    Article  PubMed  Google Scholar 

  193. Xu H, Sta Iglesia DD, Kielczewski JL et al (2007) Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci 48:1674–1682. https://doi.org/10.1167/iovs.06-1034

    Article  PubMed  Google Scholar 

  194. Xu R, Chen F, Zuo K et al (2014) Endoscopic optic nerve decompression for patients with traumatic optic neuropathy: is nerve sheath incision necessary? ORL J Otorhinolaryngol Relat Spec 76:44–49. https://doi.org/10.1159/000358305

    Article  PubMed  Google Scholar 

  195. Yan W, Chen Y, Qian Z et al (2017) Incidence of optic canal fracture in the traumatic optic neuropathy and its effect on the visual outcome. Br J Ophthalmol 101:261–267. https://doi.org/10.1136/bjophthalmol-2015-308043

    Article  PubMed  Google Scholar 

  196. Yan W, Lin J, Hu W et al (2020) Combination analysis on the impact of the initial vision and surgical time for the prognosis of indirect traumatic optic neuropathy after endoscopic transnasal optic canal decompression. Neurosurg Rev. https://doi.org/10.1007/s10143-020-01273-8

    Article  PubMed  Google Scholar 

  197. Yang C, Wang X, Wang J et al (2020) Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron 105:276-292.e275. https://doi.org/10.1016/j.neuron.2019.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yang Q, Li Y, Zou Y et al (2008) Computer-assisted three-dimensional reconstruction and spatial stereotaxis study of optic canal with multiplayer spiral computed tomographic. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 22:306-308. 311

    CAS  PubMed  Google Scholar 

  199. Yang QT, Zhang GH, Liu X et al (2012) The therapeutic efficacy of endoscopic optic nerve decompression and its effects on the prognoses of 96 cases of traumatic optic neuropathy. J Trauma Acute Care Surg 72:1350–1355. https://doi.org/10.1097/TA.0b013e3182493c70

    Article  PubMed  Google Scholar 

  200. Yang WG, Chen CT, Tsay PK et al (2004) Outcome for traumatic optic neuropathy–surgical versus nonsurgical treatment. Ann Plast Surg 52:36–42. https://doi.org/10.1097/01.sap.0000096442.82059.6d

    Article  PubMed  Google Scholar 

  201. Yang Y, Wang H, Shao Y et al (2006) Extradural anterior clinoidectomy as an alternative approach for optic nerve decompression: anatomic study and clinical experience. Neurosurgery 59:ONS253-262. https://doi.org/10.1227/01.neu.0000236122.28434.13 (discussion ONS262)

    Article  PubMed  Google Scholar 

  202. Young B, Eggenberger E, Kaufman D (2012) Current electrophysiology in ophthalmology: a review. Curr Opin Ophthalmol 23:497–505. https://doi.org/10.1097/ICU.0b013e328359045e

    Article  PubMed  Google Scholar 

  203. Yu-Wai-Man P (2015) Traumatic optic neuropathy-clinical features and management issues. Taiwan J Ophthalmol 5:3–8. https://doi.org/10.1016/j.tjo.2015.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  204. Yu-Wai-Man P and PG Griffiths (2005) Surgery for traumatic optic neuropathy. Cochrane Database Syst Rev (4):Cd005024. https://doi.org/10.1002/14651858.CD005024.pub2

  205. Yu-Wai-Man P and PG Griffiths (2007) Steroids for traumatic optic neuropathy. Cochrane Database Syst Rev (1):Cd006032. https://doi.org/10.1002/14651858.CD006032.pub2

  206. Yu-Wai-Man P, Griffiths PG (2013) Steroids for traumatic optic neuropathy. Cochrane Database Syst Rev (6):Cd006032. https://doi.org/10.1002/14651858.CD006032.pub4

  207. Yu-Wai-Man P, Griffiths PG (2013) Surgery for traumatic optic neuropathy. Cochrane Database Syst Rev 6:Cd005024. https://doi.org/10.1002/14651858.CD005024.pub3

    Article  PubMed  Google Scholar 

  208. Yu B, Chen Y, Ma Y et al (2018) Outcome of endoscopic trans-ethmosphenoid optic canal decompression for indirect traumatic optic neuropathy in children. BMC Ophthalmol 18:152. https://doi.org/10.1186/s12886-018-0792-4

    Article  PubMed  PubMed Central  Google Scholar 

  209. Yu B, Ma Y, Tu Y et al (2016) The outcome of endoscopic transethmosphenoid optic canal decompression for indirect traumatic optic neuropathy with no-light-perception. J Ophthalmol 2016:64928–64958. https://doi.org/10.1155/2016/6492858

    Article  Google Scholar 

  210. Zhang Y, Li H, Cao Y et al (2015) Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Mol Med Rep 12:6962–6968. https://doi.org/10.3892/mmr.2015.4286

    Article  CAS  PubMed  Google Scholar 

  211. Zhao SF, Yong L, Zhang JL et al (2021) Role of delayed wider endoscopic optic decompression for traumatic optic neuropathy: a single-center surgical experience. Ann Transl Med 9:136. https://doi.org/10.21037/atm-20-7810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhong H, Yu H, Chen B et al (2021) Protective effect of total Panax notoginseng saponins on retinal ganglion cells of an optic nerve crush injury rat model. Biomed Res Int 2021:4356949. https://doi.org/10.1155/2021/4356949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ziegler AB, Thiele C, Tenedini F et al (2017) Cell-autonomous control of neuronal dendrite expansion via the fatty acid synthesis regulator SREBP. Cell Rep 21:3346–3353. https://doi.org/10.1016/j.celrep.2017.11.069

    Article  CAS  PubMed  Google Scholar 

  214. Zimmerer R, Rana M, Schumann P et al (2014) Diagnosis and treatment of optic nerve trauma. Facial Plast Surg 30:518–527. https://doi.org/10.1055/s-0034-1393702

    Article  CAS  PubMed  Google Scholar 

  215. Zuo KJ, Shafa G, Antonyshyn K et al (2020) A single session of brief electrical stimulation enhances axon regeneration through nerve autografts. Exp Neurol 323:113074. https://doi.org/10.1016/j.expneurol.2019.113074

    Article  PubMed  Google Scholar 

  216. Zuo KJ, Shi JB, Wen WP et al (2009) Transnasal endoscopic optic nerve decompression for traumatic optic neuropathy: analysis of 155 cases. Zhonghua Yi Xue Za Zhi 89:389–392

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yong Wang is the chief of this case and final approval of the version. Bin Chen wrote the paper. Hengsen Zhang, Qing Zhai, Huaipeng Li, and Chunxia Wang reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhang, H., Zhai, Q. et al. Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 45, 1895–1913 (2022). https://doi.org/10.1007/s10143-021-01717-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01717-9

Keywords

Navigation