Skip to main content

Advertisement

Log in

The flicker electroretinogram interocular amplitude ratio is a strong prognostic indicator of neovascularization in patients with central retinal vein occlusion

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

To evaluate the prognostic value of interocular amplitude ratio of flicker electroretinogram (ERG) in determining the development of neovascularization in patients with central retinal vein occlusion (CRVO).

Methods

We retrospectively reviewed the data obtained from flicker ERG in 51 CRVO patients. Of these, 22 eyes which had enough follow-up to differentiate ischemic CRVO from nonischemic CRVO were included for data analysis. The flicker ERG was recorded at a 30 Hz frequency after dark adaptation, and ten sweeps were averaged.

Results

Eleven eyes were ischemic and 11 eyes were nonischemic. Three amplitude parameters had the potential to explain the type of CRVO. They were amplitude of lesion eye (p = 0.0001), interocular difference of amplitude (p < 0.0001), and interocular ratio of amplitude (p < 0.0001). Both an interocular amplitude difference of  −23 μV and interocular amplitude ratio of 60% were very good cutoff points to differentiate ischemic from nonischemic CRVO. Receiver operating characteristic curve analysis revealed that each of the two cutoff values had a sensitivity and specificity of 100%.

Conclusions

Interocular comparison of amplitude is a good solution for avoiding the variability of ERG. An interocular amplitude ratio of flicker ERG of 60% is a succinct, useful parameter in clinical practices for differentiating ischemic from nonischemic CRVO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Breton ME, Quinn GE, Keene SS, Dahmen JC, Brucker AJ (1989) Electroretinogram parameters at presentation as predictors of rubeosis in central retinal vein occlusion patients. Ophthalmology 96:1343–1352

    CAS  PubMed  Google Scholar 

  2. Breton ME, Montzka DP, Brucker AJ, Quinn GE (1991) Electroretinogram interpretation in central retinal vein occlusion. Ophthalmology 98:1937–1944

    Google Scholar 

  3. Breton ME, Schueller AW, Montzka DP (1991) Electroretinogram b-wave implicit time and b/a wave ratio as a function of intensity in central retinal vein occlusion. Ophthalmology 98:1845–1853

    CAS  PubMed  Google Scholar 

  4. Gouras P, MacKay J (1992) Supernormal cone electroretinograms in central retinal vein occlusion. Invest Ophthalmol Vis Sci 33:508–515

    CAS  PubMed  Google Scholar 

  5. Hayreh SS (1983) Classification of central retinal vein occlusion. Ophthalmology 90:458–74

    CAS  PubMed  Google Scholar 

  6. Hayreh SS, Klugman MR, Podhajsky P, Kolder HE (1989) Electroretinography in central retinal vein occlusion. Correlation of electroretinographic changes with pupillary abnormalities. Graefes Arch Clin Exp Ophthalmol 227:549–561

    CAS  Google Scholar 

  7. Hayreh SS, Klugman MR, Beri M, Kimura AE, Podhajsky P (1990) Differentiation of ischemic from non-ischemic central retinal vein occlusion during the early acute phase. Graefes Arch Clin Exp Ophthalmol 228:201–217

    Article  CAS  PubMed  Google Scholar 

  8. Jonas JB, Harder B (2007) Ophthalmodynamometric differences between ischemic vs nonischemic retinal vein occlusion. Am J Ophthalmol 143:112–116

    Article  PubMed  Google Scholar 

  9. Johnson MA, Marcus S, Elman MJ, McPhee TJ (1988) Neovascularization in central retinal vein occlusion: Electroretinographic findings. Arch Ophthalmol 106:348–352

    CAS  PubMed  Google Scholar 

  10. Johnson MA, McPhee TJ (1993) Electroretinopraphic findings in iris neovascularization due to acute central retinal vein occlusion. Arch Ophthalmol 111:806–814

    CAS  PubMed  Google Scholar 

  11. Kjeka O, Bredrup C, Krohn J (2007) Photopic 30 Hz flicker electroretinography predicts ocular neovascularization in central retinal vein occlusion. Acta Ophthalmol Scand 85:640–643

    Article  PubMed  Google Scholar 

  12. Larsson J, Andreasson S, Bauer B (1998) Cone b-wave implicit time as an early predictor of rubeosis in central retinal vein occlusion. Am J Ophthalmol 125:247–249

    Article  CAS  PubMed  Google Scholar 

  13. Larsson J, Bauer B, Cavallin-Sjoberg U, Andreasson S (1998) Fluorescein angiography versus ERG for predicting the prognosis in central retinal vein occlusion. Acta Ophthalmol Scand 76:456–460

    Article  CAS  PubMed  Google Scholar 

  14. Larsson J, Bauer B, Andreasson S (2000) The 30-Hz flicker cone ERG for monitoring the early course of central retinal vein occlusion. Acta Ophthalmol Scand 78:187–190

    Article  CAS  PubMed  Google Scholar 

  15. Larsson J, Andreasson S (2001) Photopic 30 Hz flicker ERG as a predictor for rubeosis in central retinal vein occlusion. Br J Ophthalmol 85:683–685

    Article  CAS  PubMed  Google Scholar 

  16. Matsui Y, Katsumi O, Mehta MC, Hirose T (1994) Correction of electroretinographic and fluorescein angiographic findings in unilateral central retinal vein obstruction. Graefes Arch Clin Exp Ophthalmol 232:449–457

    Article  CAS  PubMed  Google Scholar 

  17. Morrell AJ, Thompson DA, Gibson JM, Kritzinger EE, Drasdo N (1991) Electroretinography as a prognostic indicator of neovascularization in CRVO. Eye 5:362–368

    PubMed  Google Scholar 

  18. Matsui Y, Katsumi O, Sakaue H, Hirose T (1994) Electroretinogram b/a wave ratio improvement in central retinal vein obstruction. Br J Ophthalmol 78:191–198

    Article  CAS  PubMed  Google Scholar 

  19. Matsui Y, Katsumi O, McMeel JW, Hirose T (1994) Prognostic value of initial electroretinogram in central retinal vein obstruction. Graefes Arch Clin Exp Ophthalmol 232:75–81

    Article  CAS  PubMed  Google Scholar 

  20. Sabates R, Hirose T, McMeel JW (1983) Electroretinopraphy in the prognosis and classification of central retinal vein occlusion. Arch Ophthalmol 101:232–235

    CAS  PubMed  Google Scholar 

  21. Sakaue H, Katsumi O, Hirose T (1989) Electroretinographic findings in fellow eyes of patients with central retinal vein occlusion. Arch Ophthalmol 107:1459–1462

    CAS  PubMed  Google Scholar 

  22. Severns ML, Johnson MA, Merritt SA (1991) Automated estimation of implicit time and amplitude from the flicker electroretinogram. Appl Optics 30:2106–2112

    Article  Google Scholar 

  23. Severns ML, Johnson MA (1993) Predicting outcome in central retinal vein occlusion using the flicker electroretinogram. Arch Ophthalmol 111:1123–1130

    CAS  PubMed  Google Scholar 

  24. Severns ML, Johnson MA (1993) The variability of the b-wave of the electroretinogram with stimulus luminance. Documenta Ophthalmologica 84:291–299

    Article  CAS  PubMed  Google Scholar 

  25. The Central Vein Occlusion Study Group (1997) Natural history and clinical management of central retinal vein occlusion. Arch Ophthalmol 115:486–491

    Google Scholar 

  26. Williamson TH, Keating D, Bradnam M (1997) Electroretinography of central retinal vein occlusion under scotopic and photopic conditions: what to measure? Acta Ophthalmol Scand 75:48–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsi-Kung Kuo.

Additional information

The authors have no proprietary or financial interest in any product mentioned in this manuscript.

The authors have full control of all primary data, and agree Graefe's Archive for Clinical and Experimental Ophthalmology to review these data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, HK., Kuo, MT., Chen, YJ. et al. The flicker electroretinogram interocular amplitude ratio is a strong prognostic indicator of neovascularization in patients with central retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 248, 185–189 (2010). https://doi.org/10.1007/s00417-009-1205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1205-4

Keywords

Navigation