Skip to main content
Log in

The effect of single and repeated UVB radiation on rabbit lens

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

In our previous investigations, a significant cumulative effect of ultraviolet radiation (UVR) on the corneal and aqueous humour metabolic profiles was revealed. The purpose of the present study was to monitor the alterations in the rabbit lenses under the same experimental design and thereby supplement and complete prior findings.

Methods

Albino rabbit eyes were exposed to single (312 nm, 3.12 J/cm2) or repeated (312 nm, 3 × 1.04 J/cm2) UVB irradiations of the same overall doses. Lenticular samples were analysed by high resolution magic angle spinning proton nuclear magnetic resonance (HR-MAS 1H NMR) spectroscopy. Special grouping patterns between the UVB-irradiated and untreated control samples were evaluated using principal component analysis (PCA). Percentage alterations in the lenticular metabolite concentrations from UVR-B exposed rabbits were calculated relative to the levels in the control group.

Results

UVB irradiation of the albino rabbit lenses resulted in a significant decrease in the concentrations of antioxidants (glutathione), osmolytes (taurine, myoinositol) and amino acids (alanine), and a concomitant elevation in the contents of a sugar-related compound, sorbitol. Repeated UVR-B exposure of the rabbit eye had a stronger effect on the lenticular metabolic profile than a single irradiation of the same overall dose.

Conclusions

This study reveals the cumulative effect of repeated UVB irradiations, and shows that even a 48-hour interval between subsequent UVR-B exposures is not sufficient for the healing processes to restore lenticular integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ayala MN, Michael R, Soderberg PG (2000) In vivo cataract after repeated exposure to ultraviolet radiation. Exp Eye Res 70:451–456

    Article  PubMed  CAS  Google Scholar 

  2. Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol 1:776–783

    Google Scholar 

  3. Bova LM, Sweeney MH, Jamie JF, Truscott RJ (2001) Major changes in human ocular UV protection with age. Invest Ophthalmol Vis Sci 42:200–205

    PubMed  CAS  Google Scholar 

  4. Charman WN (1990) Ocular hazards arising from depletion of the natural atmospheric ozone layer: a review. Ophthalmic Physiol Opt 10:333–341

    Article  PubMed  CAS  Google Scholar 

  5. Coroneo MT, Muller-Stolzenburg NW, Ho A (1991) Peripheral light focusing by the anterior eye and the ophthalmohelioses. Ophthalmic Surg 22:705–711

    PubMed  CAS  Google Scholar 

  6. de Gruijl FR, van der Leun JC (2000) Environment and health: 3. Ozone depletion and ultraviolet radiation. CMAJ 163:851–855

    PubMed  Google Scholar 

  7. Devamanoharan PS, Ali AH, Varma SD (1998) Oxidative stress to rat lens in vitro: protection by taurine. Free Radic Res 29:189–195

    Article  PubMed  CAS  Google Scholar 

  8. Dillon J (1984) Photolytic changes in lens proteins. Curr Eye Res 3:145–150

    Article  PubMed  CAS  Google Scholar 

  9. Dillon J, Atherton SJ (1990) Time resolved spectroscopic studies on the intact human lens. Photochem Photobiol 51:465–468

    Article  PubMed  CAS  Google Scholar 

  10. Duke-Elder S, MacFaul PA (1972) Radiational injuries. In: Duke-Elder S (ed) System of ophthalmolgy. Henry Kimpton, London, pp 912–933

    Google Scholar 

  11. Fowler J, Cohen L, Jarvis P (1998) Practical statistics for field biology. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  12. Fris M, Cejkova J, Midelfart A (2007) Changes in aqueous humour following single or repeated UVB irradiation of rabbit cornea. Graefes Arch Clin Exp Ophthalmol (DOI 10.1007/s00417-007-0620-7)

  13. Fris M, Midelfart A (2007) Postnatal biochemical changes in rat lens: an important factor in cataract models. Curr Eye Res 32:95–103

    Article  PubMed  CAS  Google Scholar 

  14. Fris M, Tessem MB, Cejkova J, Midelfart A (2006) The effect of single and repeated UVB radiation on rabbit cornea. Graefes Arch Clin Exp Ophthalmol 244:1680–1687

    Article  PubMed  Google Scholar 

  15. Fris M, Tessem MB, Saether O, Midelfart A (2006) Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy. Acta Ophthalmol Scand 84:684–692

    Article  PubMed  CAS  Google Scholar 

  16. Garner B, Vazquez S, Griffith R, Lindner RA, Carver JA, Truscott RJ (1999) Identification of glutathionyl-3-hydroxykynurenine glucoside as a novel fluorophore associated with aging of the human lens. J Biol Chem 274:20847–20854

    Article  PubMed  CAS  Google Scholar 

  17. Kilic F, Bhardwaj R, Caulfeild J, Trevithic JR (1999) Modelling cortical cataractogenesis 22: is in vitro reduction of damage in model diabetic rat cataract by taurine due to its antioxidant activity? Exp Eye Res 69:291–300

    Article  PubMed  CAS  Google Scholar 

  18. Krishna CM, Uppuluri S, Riesz P, Zigler JS Jr, Balasubramanian D (1991) A study of the photodynamic efficiencies of some eye lens constituents. Photochem Photobiol 54:51–58

    Article  PubMed  CAS  Google Scholar 

  19. Lindon JC, Holmes E, Nicholson JK (2003) So what’s the deal with metabonomics? Anal Chem 75:384–391

    Article  Google Scholar 

  20. Lindon JC, Nicholson JK, Everett JR (1999) NMR spectroscopy of biofluids. Annu Rep NMR Spectrosc 38:1–88

    CAS  Google Scholar 

  21. Mayr GW (1988) Inositol phosphates: structural components, regulators and signl transducers of the cell—a review. Top Biochem 7:1–18

    Google Scholar 

  22. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  23. Midelfart A, Dybdahl A, Gribbestad IS (1996) Detection of different metabolites in the rabbit lens by high resolution 1H NMR spectroscopy. Curr Eye Res 15:1175–1181

    Article  PubMed  CAS  Google Scholar 

  24. Mitton KP, Linklater HA, Dzialoszynski T, Sanford SE, Starkey K, Trevithick JR (1999) Modelling cortical cataractogenesis 21: in diabetic rat lenses taurine supplementation partially reduces damage resulting from osmotic compensation leading to osmolyte loss and antioxidant depletion. Exp Eye Res 69:279–289

    Article  PubMed  CAS  Google Scholar 

  25. Riley MV (1976) A study of the distribution and origin of myoinositol in the cornea of the rabbit. Invest Ophthalmol 15:437–441

    PubMed  CAS  Google Scholar 

  26. Risa Ø, Sæther O, Kakar M, Mody V, Löfgren S, Söderberg PG, Krane J, Midelfart A (2005) Time dependency of metabolic changes in rat lens after in vivo UVB irradiation analysed by HR-MAS 1H NMR spectroscopy. Exp Eye Res 81:407–414

    Article  PubMed  CAS  Google Scholar 

  27. Risa Ø, Sæther O, Löfgren S, Söderberg PG, Krane J, Midelfart A (2004) Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: measurements by high resolution MAS 1H NMR spectroscopy. Invest Ophthalmol Vis Sci 45:1916–1921

    Article  PubMed  Google Scholar 

  28. Sæther O, Krane J, Risa Ø, Čejková J, Midelfart A (2005) High-resolution MAS 1H NMR spectroscopic analysis of rabbit cornea after treatment with Dexamethasone and exposure to UVB radiation. Curr Eye Res 30:1041–1049

    Article  PubMed  CAS  Google Scholar 

  29. Sæther O, Risa Ø, Čejková J, Krane J, Midelfart A (2004) High-resolution magic angle spinning 1H NMR spectroscopy of metabolic changes in rabbit lens after treatment with dexamethasone combined with UVB exposure. Graefes Arch Clin Exp Ophthalmol 242:1000–1007

    Article  PubMed  CAS  Google Scholar 

  30. Taylor LM, Andrew Aquilina J, Jamie JF, Truscott RJ (2002) Glutathione and NADH, but not ascorbate, protect lens proteins from modification by UV filters. Exp Eye Res 74:503–511

    Article  PubMed  CAS  Google Scholar 

  31. Taylor LM, Andrew Aquilina J, Jamie JF, Truscott RJ (2002) UV filter instability: consequences for the human lens. Exp Eye Res 75:165–175

    Article  PubMed  CAS  Google Scholar 

  32. Tessem MB, Bathen TF, Lofgren S, Saether O, Mody V, Meyer L, Dong X, Soderberg PG, Midelfart A (2006) Biological response in various compartments of the rat lens after in vivo exposure to UVR-B analyzed by HR-MAS 1H NMR spectroscopy. Invest Ophthalmol Vis Sci 47:5404–5411

    Article  PubMed  Google Scholar 

  33. Tessem MB, Midelfart A, Čejková J, Bathen TF (2006) Effect of UVA and UVB irradiation on the metabolic profile of rabbit cornea and lens analysed by HR-MAS 1H NMR spectroscopy. Ophthalmic Res 38:105–114

    Article  PubMed  Google Scholar 

  34. Trayhurn P, van Heyningen R (1973) The metabolism of amino acids in the bovine lens. Their oxidation as a source of energy. Biochem J 136:67–75

    PubMed  CAS  Google Scholar 

  35. Truscott RJ (2003) Human cataract: the mechanisms responsible; light and butterfly eyes. Int J Biochem Cell Biol 35:1500–1504

    Article  PubMed  CAS  Google Scholar 

  36. Truscott RJ (2005) Age-related nuclear cataract-oxidation is the key. Exp Eye Res 80:709–725

    Article  PubMed  CAS  Google Scholar 

  37. Truscott RJ, Wood AM, Carver JA, Sheil MM, Stutchbury GM, Zhu J, Kilby GW (1994) A new UV-filter compound in human lenses. FEBS Lett 348:173–176

    Article  PubMed  CAS  Google Scholar 

  38. Tsentalovich YP, Snytnikova OA, Sherin PS, Forbes MD (2005) Photochemistry of kynurenine, a tryptophan metabolite: properties of the triplet state. J Phys Chem A 109:3565–3568

    Article  PubMed  CAS  Google Scholar 

  39. Wood AM, Truscott RJ (1993) UV filters in human lenses: tryptophan catabolism. Exp Eye Res 56:317–325

    Article  PubMed  CAS  Google Scholar 

  40. Wood AM, Truscott RJ (1994) Ultraviolet filter compounds in human lenses: 3-hydroxykynurenine glucoside formation. Vision Res 34:1369–1374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by The Norwegian Quota Program, grants from the Faculty of Medicine, Norwegian University of Science and Technology, a grant from The Norwegian Research Council, Grant No. 304/06/1379 from the Grant Agency of the Czech Republic, and Grant AVOZ50390512 from the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Fris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fris, M., Čejková, J. & Midelfart, A. The effect of single and repeated UVB radiation on rabbit lens. Graefes Arch Clin Exp Ophthalmol 246, 551–558 (2008). https://doi.org/10.1007/s00417-007-0747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0747-6

Keywords

Navigation