Skip to main content

Advertisement

Log in

Inhibition of corneal angiogenesis by ascorbic acid in the rat model

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of topically administered ascorbic acid on experimentally induced corneal neovascularization in the rat model.

Materials and methods

Corneal chemical cauterization of 72 eyes in Long-Evans male rats was performed using silver nitrate/potassium nitrate sticks. Nine groups of eight eyes were used to evaluate eight concentrations of ascorbic acid with one group of eight eyes serving as a control. Topical instillation of 100 mg/ml non-pH-neutralized ascorbic acid was performed in one group while the remaining seven groups were evaluated using pH-neutralized ascorbic acid in concentrations of 100 mg/ml, 50 mg/ml, 10 mg/ml, 5 mg/ml, 1 mg/ml, 500 µg/ml, and 250 µg/ml.

Results

The percentage of corneal neovascularization and burn stimulus score was determined for all the eyes. The means of percent of corneal neovascularization in ascorbic acid 100 mg/ml (non-neutralized), 100 mg/ml, 50 mg/ml, 10 mg/ml, 5 mg/ml, 1 mg/ml, 500 μg/ml, 250 μg/ml, and control group were 17.50 ± 12.80 (p = 0.001), 17.00 ± 19.30 (p = 0.001), 15.25 ± 13.26 (p = 0.001), 17.62 ± 11.89 (p = 0.001), 28.87 ± 23.08 (p = 0.001), 29.62 ± 16.91 (p = 0.001), 60.12 ± 8.50 (p = 0.04), 65.62 ± 2.26 (p = 0.185), and 68.25 ± 4.06, respectively (Tables 1 and 2). All animals had a burn score of 2+ or higher (Table 1).

Conclusion

Ascorbic acid applied in a topical solution appears to inhibit corneal neovascularization in the rat model of inflammatory neovascularization in concentrations in a dose-dependent manner. The optimal dose-effect relation was in our model found in concentrations between 1 mg and 500 µg/ml. At concentrations below 500 µg/ml there was no statistically significant inhibition in the degree of corneal neovascularization compared to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu PC, Yang LC, Kuo HK et al (2005) Inhibition of corneal angiogenesis by local application of vasostatin. Mol Vis 11:28–35

    PubMed  CAS  Google Scholar 

  2. Chang JH, Gabiason EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249

    Article  PubMed  CAS  Google Scholar 

  3. Hill JC, Maske R (1988) An animal model for corneal graft rejection in high-risk keratoplasty. Transplantation 46:26–30

    Article  PubMed  CAS  Google Scholar 

  4. Benelli U, Ross JR, Nardi M et al (1997) Corneal neovascularization induced by xenografts or chemical cautery inhibition by cyclosporin A. Investig Ophthalmol Vis Sci 38(2):274–281

    CAS  Google Scholar 

  5. Bocci G, Danesi R, Benelli U et al (1999) Inhibitory effect of suramin in rat models of angiogenesis in vitro and in vivo. Cancer Chemother Pharmacol 43:205–212

    Article  PubMed  CAS  Google Scholar 

  6. Benelli U, Bocci G, Danesi R et al (1998) The heparan sulfate suleparoide inhibits rat corneal angiogenesis and in vitro neovascularization. Exp Eye Res 67:133–142

    Article  PubMed  CAS  Google Scholar 

  7. D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91(9):4082–4085

    Article  PubMed  CAS  Google Scholar 

  8. Fotsis T, Pepper M, Adlercreutz H et al (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90(7):2690–2694

    Article  PubMed  CAS  Google Scholar 

  9. Hanashima C, Namiki H (1999) Reduced viability of vascular endothelial cells by high concentration of ascorbic acid in vitreous humor. Cell Biol Int 23(4):287–297

    Article  PubMed  CAS  Google Scholar 

  10. Bohmer JA, Sellhaus B, Schrage NF (2001) Effects of ascorbic acid on retinal pigment epithelial cells. Curr Eye Res 23(3):206–214

    Article  PubMed  CAS  Google Scholar 

  11. Takano S, Ishiwata S, Nakazawa M et al (1997) Determination of ascorbic acid in human vitreous humor by high-performance liquid chromatography with UV detection. Curr Eye Res 16(6):589–594

    Article  PubMed  CAS  Google Scholar 

  12. Ashino H, Shimamura M, Nakajima H et al (2003) Novel function of ascorbic acid as an angiostatic factor. Angiogenesis 6(4):259–269

    Article  PubMed  CAS  Google Scholar 

  13. Roomi MW, Ivanov V, Kalinovsky T et al (2005) In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human prostate cancer PC-3 xenografts in nude mice: evaluation of tumor growth and immunohistochemistry. In Vivo 19(1):179–183

    PubMed  CAS  Google Scholar 

  14. Connolly DT, Heuvelman DM, Nelson R et al (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84(5):1470–1478

    PubMed  CAS  Google Scholar 

  15. Cho A, Reidy MA (2002) Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res 91(9):845–851

    Article  PubMed  CAS  Google Scholar 

  16. Johnson C, Galis ZS (2004) Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler Thromb Vasc Biol 24(1):54–60

    Article  PubMed  CAS  Google Scholar 

  17. Gurer G, Erdem S, Kocaefe C et al (2004) Expression of matrix metalloproteinases in vasculitic neuropathy. Rheumatol Int 24(5):255–259

    Article  PubMed  CAS  Google Scholar 

  18. Ferroni P, Basili S, Martini F et al (2003) Serum metalloproteinase 9 levels in patients with coronary artery disease: a novel marker of inflammation. J Investig Med 51(5):295–300

    Article  PubMed  CAS  Google Scholar 

  19. Sung HJ, Johnson CE, Lessner SM et al (2005) Matrix metalloproteinase 9 facilitates collagen remodeling and angiogenesis for vascular constructs. Tissue Eng 11(1–2):267–276

    Article  PubMed  CAS  Google Scholar 

  20. Roomi MW, Ivanov V, Kalinovsky T et al (2005) In vitro and in vivo antitumorigenic activity of a mixture of lysine, proline, ascorbic acid, and green tea extract on human breast cancer lines MDA-MB-231 and MCF-7. Med Oncol 22(2):129–138

    Article  PubMed  CAS  Google Scholar 

  21. Knowles HJ, Raval RR, Harris AL et al (2003) Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63:1764–1768

    PubMed  CAS  Google Scholar 

  22. Marinacci B (1994) Linus Pauling-In Memoriam. Linus Pauling Institute of Science and Medicine, Oregon State University, Corvallis, OR

  23. Sauberlich HE (1994) Pharmacology of vitamin C. Annu Rev Nutr 14:371–391

    Article  PubMed  CAS  Google Scholar 

  24. Brauchle M, Funk JO, Kind P et al (1996) Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem 271(36):21793–21797

    Article  PubMed  CAS  Google Scholar 

  25. Kuroki M, Voest EE, Amano S et al (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98(7):1667–1675

    Article  PubMed  CAS  Google Scholar 

  26. Ivanov VO, Ivanova SV, Niedzwiecki A (1997) Ascorbate affects proliferation of guinea-pig vascular smooth muscle cells by direct and extracellular matrix-mediated effects. J Mol Cell Cardiol 29(12):3293–3303

    Article  PubMed  CAS  Google Scholar 

  27. Joussen AM, Rohrschneider K, Reichling J et al (2000) Treatment of corneal neovascularization with dietary isoflavonoids and flavonoids. Exp Eye Res 71(5):483–487

    Article  PubMed  CAS  Google Scholar 

  28. Anderson MT, Staal FJ, Gitler C et al (1994) Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc Natl Acad Sci USA 91(24):11527–11531

    Article  PubMed  CAS  Google Scholar 

  29. Bowie AG, O’Neill LA (2000) Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase. J Immunol 165(12):7180–7188

    PubMed  CAS  Google Scholar 

  30. Shono T, Ono M, Izumi H et al (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16(8):4231–4239

    PubMed  CAS  Google Scholar 

  31. Carcamo JM, Pedraza A, Borquez-Ojeda O et al (2002) Vitamin C suppresses TNF alpha-induced NF kappa B activation by inhibiting I kappa B alpha phosphorylation. Biochemistry 41(43):12995–13002

    Article  PubMed  CAS  Google Scholar 

  32. Ingber D, Folkman J (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59(1):44–51

    PubMed  CAS  Google Scholar 

  33. Nicosia RF, Belser P, Bonanno E et al (1991) Regulation of angiogenesis in vitro by collagen metabolism. In Vitro Cell Dev Biol 27A(12):961–966

    Article  PubMed  CAS  Google Scholar 

  34. Schnaper HW, Grant DS, Stetler-Stevenson WG et al (1993) Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 156(2):235–246

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz E, Bienkowski RS, Coltoff-Schiller B et al (1982) Changes in the components of extracellular matrix and in growth properties of cultured aortic smooth muscle cells upon ascorbate feeding. J Cell Biol 92(2):462–470

    Article  PubMed  CAS  Google Scholar 

  36. Phillips GD, Stone AM, Jones BD et al (1994) Vascular endothelial growth factor (rhVEGF165) stimulates direct angiogenesis in the rabbit cornea. In Vivo 8(6):961–965

    PubMed  CAS  Google Scholar 

  37. Amano S, Rohan R, Kuroki M et al (1998) Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 39(1):18–22

    PubMed  CAS  Google Scholar 

  38. Philipp W, Speicher L, Humpel C (2000) Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 41(9):2514–2522

    PubMed  CAS  Google Scholar 

  39. Cursiefen C, Rummelt C, Kuchle M (2000) Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea 19(4):526–533

    Article  PubMed  CAS  Google Scholar 

  40. Orbe J, Rodriguez JA, Arias R et al (2003) Antioxidant vitamins increase the collagen content and reduce MMP-1 in a porcine model of atherosclerosis: implications for plaque stabilization. Atherosclerosis 167(1):45–53

    Article  PubMed  CAS  Google Scholar 

  41. Mahoney JM, Waterbury LD (1985) Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res 4:531–535

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam A. Peyman.

Additional information

None of the authors has any proprietary interest in any technique or product described herein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyman, G.A., Kivilcim, M., Morales, A.M. et al. Inhibition of corneal angiogenesis by ascorbic acid in the rat model. Graefes Arch Clin Exp Ophthalmol 245, 1461–1467 (2007). https://doi.org/10.1007/s00417-007-0542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-007-0542-4

Keywords

Navigation