Skip to main content

Advertisement

Log in

Asymmetric dimethylarginine is not elevated in exfoliation syndrome but symmetric dimethylarginine is related to exfoliative glaucoma

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Hyperhomocysteinemia (HH), oxidative stress and endothelial dysfunction are all implicated as possible pathogenetic factors in exfoliation syndrome (XFS) and exfoliative glaucoma (XFG). Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide and plasma level of ADMA is often elevated in HH. Thus the present study was undertaken to study plasma levels of ADMA with concomitant measurement of symmetric dimethylarginine (SDMA) and L-arginine (L-Arg) in XFS and XFG.

Methods

This cross-sectional, prospective study involved 36 XFS patients, 11 of them having XFG, and 36 age- and gender-matched controls. Fasting plasma ADMA, SDMA and L-Arg levels of participants were determined. A special view was created how plasma L-Arg, ADMA and SDMA correlate to plasma homocysteine (P-Hcy). In addition, the influence of P-Hcy values derived from our previous study on the above mentioned parameters were evaluated by cut-off values of P-Hcy, 12 μmol/l for women and 14.5 μmol/l for men.

Results

The mean plasma ADMA, SDMA and L-Arg levels were 0.41, 0.49 and 62.9 μmol/l in the XFS/XFG group, and 0.41, 0.44 and 69.7 μmol/l in the control group, respectively. As all parameters within the XFS and control group were compared, no statistical significance was stated. On the other hand, a positive correlation was observed between plasma SDMA and P-Hcy in XFGs (P=0.002), and additionally, also a statistically significant difference was in plasma SDMA between the two groups sorted by cut-off levels of P-Hcy 0.49±0.15 vs 0.36±0.04 μmol/l, above and below cut-off levels, respectively (P=0.001), but not between ADMA in a respective assay. The mean values of L-Arg were 64.6±17.2 vs 74.8±13.3 μg/l, respectively (P=0.031). In the XFS subgroup, on the contrary, there was no positive correlation between P-Hcy and plasma SDMA.

Conclusions

A positive correlation of plasma SDMA in respect to P-Hcy in XFGs and increase of SDMA in mild or intermediate hyperhomocysteinemia may indicate SDMA as a marker of developing XFG in hyperhomocysteinemic subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altintas O, Maral H, Yuksel N, Karabas VL, Dillioglugil MO, Caglar Y (2005) Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 243:677–683

    Article  PubMed  CAS  Google Scholar 

  2. Axer-Siegel R, Bourla D, Ehrlich R, Dotan G, Benjamini Y, Gavendo S, Weinberger D, Sela BA (2004) Association of neovascular age-related macular degeneration and hyperhomocysteinemia. Am J Ophthalmol 137:84–89

    Article  PubMed  Google Scholar 

  3. Bleich S, Jünemann A, von Ahsen N, Lausen B, Ritter K, Beck G, Naumann GO, Kornhuber J (2002) Homocysteine and risk of open-angle glaucoma. J Neural Transm 109:1499–1504

    Article  PubMed  CAS  Google Scholar 

  4. Boger RH (2003) Association of asymmetric dimethylarginine and endothelial dysfunction. Clin Chem Lab Med 41:1467–1472

    Article  PubMed  Google Scholar 

  5. Boger RH (2003) The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 59:824–833

    Article  PubMed  CAS  Google Scholar 

  6. Boger RH (2004) Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr 134:2842S–2847S; discussion 2853S

    PubMed  Google Scholar 

  7. Boger RH, Bode-Boger SM, Thiele W, Junker W, Alexander K, Frolich JC (1997) Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 95:2068–2074

    PubMed  CAS  Google Scholar 

  8. Boger RH, Schwedhelm E, Maas R, Quispe-Bravo S, Skamira C (2005) ADMA and oxidative stress may relate to the progression of renal disease: rationale and design of the VIVALDI study. Vasc Med 10(Suppl 1):S97–S102

    Article  PubMed  Google Scholar 

  9. Cahill M, Karabatzaki M, Meleady R, Refsum H, Ueland P, Shields D, Mooney D, Graham I (2000) Raised plasma homocysteine as a risk factor for retinal vascular occlusive disease. Br J Ophthalmol 84:154–157

    Article  PubMed  CAS  Google Scholar 

  10. Fallon UB, Virtamo J, Young I, McMaster D, Ben-Shlomo Y, Wood N, Whitehead AS, Smith GD (2003) Homocysteine and cerebral infarction in Finnish male smokers. Stroke 34:1359–1363

    Article  PubMed  CAS  Google Scholar 

  11. Fermo I, Arcelloni C, Mazzola G, D’Angelo A, Paroni R (1998) High-performance liquid chromatographic method for measuring total plasma homocysteine levels. J Chromatogr B Biomed Sci Appl 719:31–36

    Article  PubMed  CAS  Google Scholar 

  12. Gherghel D, Griffiths HR, Hilton EJ, Cunliffe IA, Hosking SL (2005) Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 46:877–883

    Article  PubMed  Google Scholar 

  13. Giusti B, Marcucci R, Lapini I, Sestini I, Lenti M, Yacoub M, Pepe G (2004) Role of hyperhomocysteinemia in aortic disease. Cell Mol Biol (Noisy-le-grand) 50:945–952

    CAS  Google Scholar 

  14. Goldstein M, Leibovitch I, Yeffimov I, Gavendo S, Sela BA, Loewenstein A (2004) Hyperhomocysteinemia in patients with diabetes mellitus with and without diabetic retinopathy. Eye 18:460–465

    Article  PubMed  CAS  Google Scholar 

  15. Kielstein JT, Boger RH, Bode-Boger SM, Schaffer J, Barbey M, Koch KM, Frolich JC (1999) Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease. J Am Soc Nephrol 10:594–600

    PubMed  CAS  Google Scholar 

  16. Kikuchi M, Kashii S, Honda Y, Tamura Y, Kaneda K, Akaike A (1997) Protective effects of methylcobalamin, a vitamin B12 analog, against glutamate-induced neurotoxicity in retinal cell culture. Invest Ophthalmol Vis Sci 38:848–854

    PubMed  CAS  Google Scholar 

  17. Kim S, Lim IK, Park GH, Paik WK (1997) Biological methylation of myelin basic protein: enzymology and biological significance. Int J Biochem Cell Biol 29:743–751

    Article  PubMed  CAS  Google Scholar 

  18. Koliakos GG, Konstas AG, Schlötzer-Schrehardt U, Hollo G, Katsimbris IE, Georgiadis N, Ritch R (2003) 8-isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol 87:353–356

    Article  Google Scholar 

  19. Laganovska G, Martinsons A, Pitrans B, Widner B, Fuchs D (2003) Kynurenine and neopterin in the aqueous humor of the anterior chamber of the eye and in serum of cataract patients. Adv Exp Med Biol 527:367–374

    PubMed  CAS  Google Scholar 

  20. Larsson J, Hultberg B, Hillarp A (2000) Hyperhomocysteinemia and the MTHFR C677T mutation in central retinal vein occlusion. Acta Ophthalmol Scand 78:340–343

    Article  PubMed  CAS  Google Scholar 

  21. Leblhuber F, Walli J, Artner-Dworzak E, Vrecko K, Widner B, Reibnegger G, Fuchs D (2000) Hyperhomocysteinemia in dementia. J Neural Transm 107:1469–1474

    Article  PubMed  CAS  Google Scholar 

  22. Leibovitch I, Kurtz S, Shemesh G, Goldstein M, Sela BA, Lazar M, Loewenstein A (2003) Hyperhomocystinemia in pseudoexfoliation glaucoma. J Glaucoma 12:36–39

    Article  PubMed  Google Scholar 

  23. Lentz SR (2005) Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost 3:1646–1654

    Article  PubMed  CAS  Google Scholar 

  24. Lentz SR, Rodionov RN, Dayal S (2003) Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl 4:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Linnér E, Popovic V, Gottfries CG, Jonsson M, Sjögren M, Wallin A (2001) The exfoliation syndrome in cognitive impairment of cerebrovascular or Alzheimer’s type. Acta Ophthalmol Scand 79:283–285

    Article  PubMed  Google Scholar 

  26. Mashimo H, Goyal RK (1999) Lessons from genetically engineered animal models. IV. Nitric oxide synthase gene knockout mice. Am J Physiol 277:G745–G750

    PubMed  CAS  Google Scholar 

  27. Mitchell P, Wang JJ, Smith W (1997) Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol 124:685–687

    PubMed  CAS  Google Scholar 

  28. Mizrahi EH, Noy S, Sela BA, Fleissig Y, Arad M, Adunsky A (2003) Further evidence of interrelation between homocysteine and hypertension in stroke patients: a cross-sectional study. Isr Med Assoc J 5:791–794

    PubMed  Google Scholar 

  29. Paroni R, Fermo I, Fiorina P, Cighetti G (2005) Determination of asymmetric and symmetric dimethylarginines in plasma of hyperhomocysteinemic subjects. Amino Acids 28:389–394

    Article  PubMed  CAS  Google Scholar 

  30. Pettersson A, Uggla L, Backman V (1997) Determination of dimethylated arginines in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 692:257–262

    Article  PubMed  CAS  Google Scholar 

  31. Pianka P, Almog Y, Man O, Goldstein M, Sela BA, Loewenstein A (2000) Hyperhomocystinemia in patients with nonarteritic anterior ischemic optic neuropathy, central retinal artery occlusion, and central retinal vein occlusion. Ophthalmology 107:1588–1592

    Article  PubMed  CAS  Google Scholar 

  32. Polska E, Ehrlich P, Luksch A, Fuchsjager-Mayrl G, Schmetterer L (2003) Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans. Invest Ophthalmol Vis Sci 44:3110–3114

    Article  PubMed  Google Scholar 

  33. Puustjärvi T, Blomster H, Kontkanen M, Punnonen K, Teräsvirta M (2004) Plasma and aqueous humour levels of homocysteine in exfoliation syndrome. Graefes Arch Clin Exp Ophthalmol 242:749–754

    Article  PubMed  Google Scholar 

  34. Repo LP, Naukkarinen A, Paljärvi L, Teräsvirta ME (1996) Pseudoexfoliation syndrome with poorly dilating pupil: a light and electron microscopic study of the sphincter area. Graefes Arch Clin Exp Ophthalmol 234:171–176

    Article  PubMed  CAS  Google Scholar 

  35. Ritch R, Schlötzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45:265–315

    Article  PubMed  CAS  Google Scholar 

  36. Sacca SC, Pascotto A, Camicione P, Capris P, Izzotti A (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123:458–463

    Article  PubMed  CAS  Google Scholar 

  37. Schlötzer-Schrehardt U, Zenkel M, Hofmann-Rummelt C, Kruse FE, Naumann GO (2005) [Functional significance of adenosine receptors in the eye and their dysregulation in pseudoexfoliation syndrome]. Ophthalmologe 102:1074–1080, 1082

    Article  PubMed  Google Scholar 

  38. Schumacher S, Schlötzer-Schrehardt U, Martus P, Lang W, Naumann GO (2001) Pseudoexfoliation syndrome and aneurysms of the abdominal aorta. Lancet 357:359–360

    Article  PubMed  CAS  Google Scholar 

  39. Selhub J (2002) Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 6:39–42

    PubMed  CAS  Google Scholar 

  40. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, Tishler PV, Hennekens CH (1992) A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in us physicians. JAMA 268:877–881

    Article  PubMed  CAS  Google Scholar 

  41. Teerlink T, Nijveldt RJ, de Jong S, van Leeuwen PA (2002) Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem 303:131–137

    Article  PubMed  CAS  Google Scholar 

  42. Tran CT, Leiper JM, Vallance P (2003) The DDAH/ADMA/NOS pathway. Atheroscler Suppl 4:33–40

    Article  PubMed  CAS  Google Scholar 

  43. Troen A, Rosenberg I (2005) Homocysteine and cognitive function. Semin Vasc Med 5:209–214

    Article  PubMed  Google Scholar 

  44. Troen AM (2005) The central nervous system in animal models of hyperhomocysteinemia. Prog Neuropsychopharmacol Biol Psychiatry 29:1140–1151

    Article  PubMed  CAS  Google Scholar 

  45. Turacli ME, Tekeli O, Ozdemir F, Akar N (2005) Methylenetetrahydrofolate reductase 677 C-T and homocysteine levels in Turkish patients with pseudoexfoliation. Clin Experiment Ophthalmol 33:505–508

    Article  PubMed  Google Scholar 

  46. Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289:H2649–H2656

    Article  PubMed  CAS  Google Scholar 

  47. Valkonen VP, Päivä H, Salonen JT, Lakka TA, Lehtimäki T, Laakso J, Laaksonen R (2001) Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358:2127–2128

    Article  PubMed  CAS  Google Scholar 

  48. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  PubMed  CAS  Google Scholar 

  49. Vessani RM, Ritch R, Liebmann JM, Jofe M (2003) Plasma homocysteine is elevated in patients with exfoliation syndrome. Am J Ophthalmo 136:41–46

    Article  CAS  Google Scholar 

  50. Widner B, Enzinger C, Laich A, Wirleitner B, Fuchs D (2002) Hyperhomocysteinemia, pteridines and oxidative stress. Curr Drug Metab 3:225–232

    Article  PubMed  CAS  Google Scholar 

  51. Yoo JH, Lee SC (2001) Elevated levels of plasma homocyst(e)ine and asymmetric dimethylarginine in elderly patients with stroke. Atherosclerosis 158:425–430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Ms L. Karjalainen, MSc, for performing statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillevi Blomster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomster, H., Puustjärvi, T., Kontkanen, M. et al. Asymmetric dimethylarginine is not elevated in exfoliation syndrome but symmetric dimethylarginine is related to exfoliative glaucoma. Graefe's Arch Clin Exp Ophthalmol 245, 204–209 (2007). https://doi.org/10.1007/s00417-006-0425-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0425-0

Keywords

Navigation