Skip to main content
Log in

Deficits of spatial localization in children with strabismic amblyopia

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Besides loss of visual acuity and binocularity, spatial localization deficits (comprising both increased spatial uncertainty and spatial distortions) are an important feature of strabismic amblyopia. Although they have been extensively investigated in adult amblyopes, there are still many open questions concerning their substrate and relationship to clinical parameters. Our aim was to develop a procedure for assessing vertical alignment, which enabled us to find out whether children with strabismic amblyopia had similar spatial localization deficits, and their relation to the children’s clinical condition.

Methods

Vertical alignment was assessed in children by comparing the visual direction in space of three loci along the vertical meridian, separated by 5 deg of visual angle. We tested alignment in the amblyopic and dominant eyes of 32 strabismic and in both eyes of 35 control children from 4.5 to 10 years, together with a careful orthoptic examination.

Results

In the amblyopic eyes, increased uncertainty and systematic distortions outside the normal range occurred. Large angles of deviation and pathological fixation patterns were necessary, but not sufficient conditions for gross spatial deficits to occur. The fellow dominant eyes showed spatial localization similar to normal eyes.

Conclusions

Children with strabismic amblyopia exhibited localization deficits and relationship to clinical data similar to those in adult amblyopes. These data are important for further investigations about the substrate, plasticity and the clinical relevance of perceptual distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barrett BT, Pacey JE, Bradley A, Thibos LN, Morrill P (2003) Nonveridical visual perception in human amblyopia. Invest Ophthalmol Vis Sci 44:1555–1567

    Article  PubMed  Google Scholar 

  2. Bedell HE, Flom MC (1981) Monocular spatial distortion in strabismic amblyopia. Invest Ophthalmol Vis Sci 20:263–268

    CAS  PubMed  Google Scholar 

  3. Bedell HE, Flom MC, Barbeito R (1985) Spatial aberrations and acuity in strabismus and amblyopia. Invest Ophthalmol Vis Sci 26:909–916

    CAS  PubMed  Google Scholar 

  4. Burkhalter A (1993) Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cerebral Cortex 3:476–487

    CAS  PubMed  Google Scholar 

  5. Burkhalter A, Bernardo KL, Charles V (1993) Development of local circuits in human visual cortex. J Neurosci 13:1916–1931

    CAS  PubMed  Google Scholar 

  6. Cleary M, Thompson CM (2001) Diagnosis of eccentric fixation using a calibrated ophthalmoscope: defining clinically significant limits. Ophthalmic Physiol Opt 21:461–469

    Article  CAS  PubMed  Google Scholar 

  7. Crist RE, Kapadia MK, Westheimer G, Gilbert CD (1997) Perceptual learning of spatial localization: specificity for orientation, position, and context. J Neurophysiol 78:2889–2894

    CAS  PubMed  Google Scholar 

  8. Demanins R, Hess RF (1996) Effect of exposure duration on spatial uncertainty in normal and amblyopic eyes. Vision Res 36:1189–1193

    Article  CAS  PubMed  Google Scholar 

  9. Flom MC (1991) Contour interaction and the crowding effect. Prob Optom 3:237–275

    Google Scholar 

  10. Freeman RD, Bradley A (1980) Monocularly deprived humans: nondeprived eye has supernormal vernier acuity. J Neurophysiol 43:1645–1653

    CAS  PubMed  Google Scholar 

  11. Fronius M (2002) Amblyopietherapie in der Diskussion. Ophthalmologe 99:747–751

    Article  CAS  PubMed  Google Scholar 

  12. Fronius M, Sireteanu R (1989) Monocular geometry is selectively distorted in the central visual field of strabismic amblyopes. Invest Ophthalmol Vis Sci 30:2034–2044

    CAS  PubMed  Google Scholar 

  13. Fronius M, Sireteanu R (1992a) Lokalisationsstörungen bei Schielamblyopen: horizontale Streckenteilung und vertikale relative Lokalisation. Klin Monatsbl Augenheilkd 201:22–29

    CAS  PubMed  Google Scholar 

  14. Fronius M, Sireteanu R (1992b) Spatial localization errors in strabismic amblyopes: partitioning of horizontal lines and vertical alignment. Perception 21:39

    CAS  PubMed  Google Scholar 

  15. Fronius M, Sireteanu R (1995) Distortions of visual space perception in strabismic amblyopia. Strabismus 3:43–45

    Google Scholar 

  16. Fronius M, Sireteanu R, Fuisting B, Zubcov A (1995) A test for assessing spatial localization in strabismic children. Perception: 24, 53

  17. Fronius M, Zubcov A, Sireteanu R (1998) Spatial localization changes during occlusion therapy in children with strabismic amblyopia. Perception 27:161

    Google Scholar 

  18. Fronius M, Zubcov A, Sireteanu R, Büttner A (1999) Dynamics of spatial localization changes during occlusion therapy in children with strabismic amblyopia. Invest Ophthalmol Vis Sci 40 [Suppl]:307

  19. Fronius M, Sireteanu R, Zubcov A, Büttner A (2000) Preliminary report: monocular spatial localization in children with strabismic amblyopia. Strabismus 8:243–249

    Article  CAS  PubMed  Google Scholar 

  20. Fuisting B, Haase W (1989) Gestörte relative Lokalisation bei Amblyopie vor und nach Behandlung. Z Prakt Augenheilkd 10:210–216

    Google Scholar 

  21. Gingras G, Mitchell DE, Hess RF (1999) The spatial localization deficit in visually deprived kittens. Invest Ophthalmol Vis Sci 40 [Suppl]:287

    Google Scholar 

  22. Haase W (1989) Amblyopie-Forschung unter klinischen Gesichtspunkten. Hamburger Ärztebl 10:375–382

    Google Scholar 

  23. Haase W, Hohmann A (1982) Ein neuer Test (C-Test) zur quantitativen Prüfung der Trennschwierigkeiten (“crowding”)—Ergebnisse bei Amblyopie und Ametropie. Klin Monatsbl Augenheilkd 180:210–215

    CAS  PubMed  Google Scholar 

  24. Hess RF, Field DJ (1994) Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Res 24:3397–3406

    Article  Google Scholar 

  25. Hess RF, Holliday IE (1992) The spatial localization deficit in amblyopia. Vision Res 32:1319–1339

    Article  CAS  PubMed  Google Scholar 

  26. Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia: neural aberrations and neural sensitivity loss. Pflügers Arch 377:201–207

    Google Scholar 

  27. Hess RF, McIlhagga W, Field DJ (1997) Contour integration in strabismic amblyopia: sufficiency of an explanation based on positional uncertainty. Vision Res 37:3145–3161

    Article  CAS  PubMed  Google Scholar 

  28. Hess RF, Wang Y, Demanins R, Wilkinson F, Wilson H (1999) A deficit in strabismic amblyopia for global shape detection. Vision Res 39:901–914

    Article  CAS  PubMed  Google Scholar 

  29. Kiorpes L (1992) Effect of strabismus on the development of vernier acuity and grating acuity in monkeys. Vis Neurosci 9:253–259

    CAS  PubMed  Google Scholar 

  30. Kiorpes L, Movshon JA (2002) Extended developmental time course for global visual functions in primates. J Vision 2(10): 47a

    Google Scholar 

  31. Kiorpes L, Kiper DC, O’Keefe LP, Cavanaugh JR, Movshon JA (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci 18:6411–6424

    CAS  PubMed  Google Scholar 

  32. Kovács I (2000) Human development of perceptual organization. Vision Res 40:1301–1310

    Article  PubMed  Google Scholar 

  33. Kovács I, Polat U, Pennefather PM, Chandna A, Norcia AM (2000) A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vision Res 40:1775–1783

    Article  PubMed  Google Scholar 

  34. Lagrèze W, Sireteanu R (1991) Two-dimensional spatial distortions in human strabismic amblyopia. Vision Res 31:1271–1288

    Article  PubMed  Google Scholar 

  35. Lei H, Schuchard RA (1997) Using two preferred retinal loci for different lighting conditions in patients with central scotomas. Invest Ophthalmol Vis Sci 38:1812–1818

    CAS  PubMed  Google Scholar 

  36. Levi DM, Klein SA (1985) Vernier acuity, crowding and amblyopia. Vision Res 25:979–991

    Article  CAS  PubMed  Google Scholar 

  37. Levi DM, Klein SA (2003) Noise provides some new signals about the spatial vision of amblyopes. J Neurosci 23:2522–2526

    CAS  PubMed  Google Scholar 

  38. Levi DM, Klein SA, Yap YL (1987) Positional uncertainty in peripheral and amblyopic vision. Vision Res 27:581–597

    Article  CAS  PubMed  Google Scholar 

  39. Löwel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212

    PubMed  Google Scholar 

  40. McGraw P, Winn B, Whitaker D, McFazdean R (1998) Positional acuity in amblyopia: does a perceptual consequence of neural recruitment exist? Ophthalmic Physiol Opt 18:423–429

    CAS  PubMed  Google Scholar 

  41. Noorden GK von (1990) Binocular vision and ocular motility. Mosby, St. Louis

  42. Polat U, Sagi D, Norcia AM (1997) Abnormal long-range spatial interactions in amblyopia. Vision Res 37:737–744

    Article  CAS  PubMed  Google Scholar 

  43. Pugh M (1958) Visual distortion in amblyopia. Br J Ophthalmol 42:449–460

    CAS  PubMed  Google Scholar 

  44. Rentschler I, Hilz R (1985) Amblyopic processing of positional information. I. Vernier acuity. Exp Brain Res 60:270–278

    CAS  PubMed  Google Scholar 

  45. Roelfsema P, König P, Engel A, Sireteanu R, Singer W (1994) Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci 6:1645–1655

    CAS  PubMed  Google Scholar 

  46. Simmers AJ, Gray LS, McGraw PV, Winn B (1999) Functional visual loss in amblyopia and the effect of occlusion therapy. Invest Ophthalmol Vis Sci 40:2859–2871

    CAS  PubMed  Google Scholar 

  47. Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–764

    CAS  PubMed  Google Scholar 

  48. Sireteanu R, Fronius M (1989) Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Invest Ophthalmol Vis Sci 30:2023–2033

    CAS  PubMed  Google Scholar 

  49. Sireteanu R, Rieth C (1992) Texture segregation in infants and children. Behav Brain Res 49:133–139

    CAS  PubMed  Google Scholar 

  50. Sireteanu R, Kellerer R, Boergen K-P (1984) The development of the peripheral visual acuity in human infants. A preliminary study. Hum Neurobiol 3:81–85

    CAS  PubMed  Google Scholar 

  51. Sireteanu R, Lagrèze WD, Constantinescu DH (1993) Distortions in two-dimensional visual space perception in strabismic observers. Vision Res 33:677–690

    Article  CAS  PubMed  Google Scholar 

  52. Sireteanu R, Fronius M, Constantinescu DH (1994) The development of visual acuity in the peripheral visual field of human infants: Binocular and monocular measurements. Vision Res 34:1659–1671

    Article  CAS  PubMed  Google Scholar 

  53. Tychsen L, Burkhalter A, Wong A (2002) Paucity of horizontal connections for binocular vision within primary visual cortex of naturally-strabismic macaque. ARVO abstract

  54. vom Hofe K (1930) Untersuchungen über das Sehen in Fällen von Schielamblyopie. Klin Monatsbl Augenheilkd 85:79

    Google Scholar 

  55. Yuodelis C, Hendrickson A (1986) A qualitative and quantitative analysis of the human fovea during development. Vision Res 26:847–855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author M.F. was supported by grants from the Deutsche Forschungsgemeinschaft (Fr 1312/1-1 and 1-2). Thanks are due to Professors C. Ohrloff and W. Singer for support of this study, to the ophthalmologists and orthoptists who referred patients to our lab and made careful orthoptic examinations (PD Dr. D. Friedrich, Dr. U. Aschoff, M. Theisen, I. Bachert, A. Büttner-Cordey, H. Bartz, B. Herrmann, M. Murtro), and to our patients and their parents for their collaboration. We gratefully acknowledge the secretarial assistance of S. Klekar, help with statistics by Dr. Tews from the Biomathematics Department, and M. Mulvahill for language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fronius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fronius, M., Sireteanu, R. & Zubcov, A. Deficits of spatial localization in children with strabismic amblyopia. Graefe's Arch Clin Exp Ophthalmol 242, 827–839 (2004). https://doi.org/10.1007/s00417-004-0936-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0936-5

Keywords

Navigation