Skip to main content

Advertisement

Log in

Evaluation of the blood–aqueous barrier by laser flare cell photometry following retinal cryocoagulation

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the influence of peripheral 360° retinal cryocoagulation on the blood–aqueous barrier of patients with retinal vascular disorders.

Methods

The aqueous of 50 eyes of 50 patients with diabetic retinopathy or central vein occlusion was measured by laser flare photometry (FC-2000, Kowa) before peripheral 360° retinal cryocoagulation and 1 day, 1 week, and 1 month thereafter.

Results

Mean aqueous flare values before treatment were 15.7 (±8.2) photon counts/ms; mean cell count was 9.8 (±14.8) cells/0.5 mm3. One day after retinal cryocoagulation flare values had increased statistically significantly to a mean of 39.2 (±85.8) photon counts/ms, while the increase in mean cell number to 15.0 (±37.2) cells/0.5 mm3 did not reach statistical significance. One week following treatment, mean flare values had dropped to 30.9 (±49.6) photon counts/ms and were no longer significantly elevated compared with baseline, while the mean cell count of 11.1 (±27.0) cells/0.5 mm3 was now statistically significantly elevated compared with baseline. One month after treatment the flare values had decreased to a mean of 19.7 (±12.0) photon counts/ms, and mean cell count had decreased to 8.1 (±10.4) cells/0.5 mm3; at this point neither parameter showed a statistically significant difference from baseline values.

Conclusion

Peripheral 360° retinocryocoagulation does not lead to permanent disturbance of the blood–aqueous barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benedett R, Olk RJ, Arribas NP, Okun E, Johnston GP, Boniuk I, Escoffery RF, Grand MG, Schoch LH (1987) Transconjunctival anterior retinal cryotherapy for proliferative diabetic retinopathy. Ophthalmology 94:612–619

    Article  CAS  PubMed  Google Scholar 

  2. Brodell LP, Olk RJ, Arribas NP, Okun E, Johnston GP, Boniuk I, Escoffery RF, Grand MG, Burgess DB, Schoch LH (1987) Neovascular glaucoma: a retrospective analysis of treatment with peripheral panretinal cryotherapy. Ophthalmic Surg 18:200–206

    CAS  PubMed  Google Scholar 

  3. Daily MJ, Gieser RG (1984) Treatment of proliferative diabetic retinopathy with panretinal cryotherapy. Ophthalmic Surg 15:741–745

    CAS  PubMed  Google Scholar 

  4. Hilton GF (1979) Panretinal cryotherapy for diabetic rubeosis. Arch Ophthalmol 97:776

    Article  CAS  PubMed  Google Scholar 

  5. Inoue M, Tsukahara Y, Shirabe H, Yamamoto M (2001) Disruption of the blood–aqueous barrier following retinal laser photocoagulation and cryopexy in pigmented rabbits. Ophthalmic Res 33:37–41

    Article  CAS  PubMed  Google Scholar 

  6. Jaccoma EH, Conway BP, Campochiaro PA (1985) Cryotherapy causes extensive breakdown of the blood–retinal barrier—a comparison with argon laser photocoagulation. Arch Ophthalmol 103:1728–1730

    Article  CAS  PubMed  Google Scholar 

  7. Knapp C, Funk J (1997) Periphere Netzhautkryokoagulation—Langzeitergebnisse. Ophthalmologe 94:655–658

    Article  CAS  PubMed  Google Scholar 

  8. Küchle M, Schönherr U, Nguyen NX, Steinhäuser B, Naumann GOH (1992) Quantitative measurement of aqueous flare and aqueous “cells” in eyes with diabetic retinopathy. German J Ophthalmol 1:164–169

    Google Scholar 

  9. Küchle M, Hannappel E, Nguyen NX, Ho ST, Beck W, Naumann GOH (1993) Korrelation zwischen Tyndallometrie mit dem “Laser Flare-Cell Meter” in vivo und biochemischer Proteinbestimmung im menschlichen Kammerwasser. Klin Monatsbl Augenheilkd 202:14–18

    Article  PubMed  Google Scholar 

  10. Larsson LI, Nuija E (2001) Increased permeability of the blood–aqueous barrier after panretinal photocoagulation for proliferative diabetic retinopathy. Acta Ophthalmol Scand 79:414–416

    Article  CAS  PubMed  Google Scholar 

  11. May DR, Bergstrom TJ, Parmet AJ, Schwartz JG (1980) Treatment of neovascular glaucoma with transscleral panretinal cryotherapy. Ophthalmology 87:1106–1111

    Article  CAS  PubMed  Google Scholar 

  12. Mohan V, Eagling EM (1978) Peripheral retinal cryotherapy as a treatment for neovascular glaucoma. Transophthalmol Soc UK 98:93–95

    CAS  Google Scholar 

  13. Moriarty AP, Spalton DJ (1995) Laser flare intensity in diabetes. Br J Ophthalmol 79:299–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moriarty AP, Spalton DJ, Moriarty BJ, Shilling JS, Ffytche TJ, Bulsara M (1994) Studies of the blood–aqueous barrier in diabetes mellitus. Am J Ophthalmol 117:768–771

    Article  CAS  PubMed  Google Scholar 

  15. Moriarty AP, Spalton DJ, Shilling JS, Ffytche TJ, Bulsara M (1996) Breakdown of the blood–aqueous barrier after argon laser panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology 103:833–838

    Article  CAS  PubMed  Google Scholar 

  16. Mosier MA, Del Piero E (1985) Retinal cryopexy in the management of proliferative diabetic retinopathy. Ann Ophthalmol 17:178–181

    CAS  PubMed  Google Scholar 

  17. Mosier MA, Del Piero E, Gheewala SM (1985) Anterior retinal cryotherapy in diabetic vitreous hemorrhage. Am J Ophthalmol 100:440–444

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen NX, Küchle M (1993) Aqueous flare and cells in eyes with retinal vein occlusion – correlation with retinal fluorescein angiographic findings. Br J Ophthalmol 77:280–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen NX, Martus P, Küchle M (1996) Eine klinische Vergleichstudie zur Tyndallometrie mittels zweier Laser-Flare-Meter. Klin Monatsbl Augenheilkd 209:89–93

    Article  CAS  PubMed  Google Scholar 

  20. Oosterhuis JA, Bijlmer-Gorter H (1980) Cryotreatment in proliferative diabetic retinopathy—long-term results. Ophthalmologica 181:81–87

    Article  CAS  PubMed  Google Scholar 

  21. Oshika T, Kato S, Funatsu H (1989) Quantitative assessment of aqueous flare intensity in diabetes. Graefe’s Arch Clin Exp Ophthalmol 227:518–520

    Article  CAS  Google Scholar 

  22. Pauleikhoff D, Engineer B, Wessing AS (1997) Die Kryokoagulation in der Therapie der proliferativen diabetischen Retinopathie. Klin Monatsbl Augenheilkd 210:147–152

    Article  CAS  PubMed  Google Scholar 

  23. Ramsay RC, Cantrill HL, Knobloch WH (1982) Cryoretinopexy for proliferate diabetic retinopathy. Can J Ophthalmol 17:17–20

    CAS  PubMed  Google Scholar 

  24. Saari KM, Guillén-Monterrubio OM, Hartikainen J, Hämäläinen MM, Taskinen K (1997) Measurement of protein concentration of aqueous humour in vivo: correlation between laser flare measurements and chemical protein determination. Acta Ophthalmol Scand 75:63–66

    Article  CAS  PubMed  Google Scholar 

  25. Schildwächter A, Witschel H (1988) Netzhautkryokoagulation bei Rubeosis iridis. Klin Monatsbl Augenheilkd 193:146–151

    Article  PubMed  Google Scholar 

  26. Segato T, Piermarocchi S, Midena E, Bertoja H (1984) Retinal cryotherapy in the management of proliferative diabetic retinopathy. Am J Ophthalmol 98:240–241

    Article  CAS  PubMed  Google Scholar 

  27. Shah SM, Spalton DJ, Smith SE (1991) Measurement of aqueous cells and flare in normal eyes. Br J Ophthalmol 75:348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stefaniotou M, Paschides CA, Psilas K (1995) Panretinal cryopexy for the management of neovascularization of the iris. Ophthalmologica 209:141–144

    Article  CAS  PubMed  Google Scholar 

  29. Tost F, Heilmann P, Lautenschläger C (1995) Aqueous flare measurement with a laser flare cellmeter in eyes with diabetic retinopathy. Ophthalmologica 209:56–59

    Article  CAS  PubMed  Google Scholar 

  30. Veckener M, Van Overdam K, Bouwens D, Feron E, Mertens D, Peperkamp E, Ringens P, Mulder P, Van Meurs J (2001) Randomized clinical trial of cryotherapy versus laser photocoagulation for retinopexy in conventional retinal detachment surgery. Am J Ophthalmol 132:343–347

    Article  Google Scholar 

  31. Vernon SA, Cheng H (1988) Panretinal cryotheraphy in neovascular disease. Br J Ophthalmol 72:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe K, Ideta H, Nakatake J, Shinagawa K, Demizu S, Takenaka C (1995) Anterior chamber inflammation after transconjunctival cryosurgery. Graefe’s Arch Clin Exp Ophthalmol 233:71–73

    Article  CAS  Google Scholar 

  33. Weiss DI, Gold D (1978) Neofibrovascularization of iris and anterior chamber angle: a clinical classification. Ann Ophthalmol 10:488–491

    CAS  PubMed  Google Scholar 

  34. Wiedemann R, Walter A, Wiedemann P (1998) Tyndallometrie bei Patienten mit diabetischem Makulaödem vor und nach zentraler Laserkoagulation. Klin Monatsbl Augenheilkd 212:32–36

    Article  CAS  PubMed  Google Scholar 

  35. Zaczek A, Hallnas K, Zetterstrom C (1999) Aqueous flare intensity in relation to different stages of diabetic retinopathy. Eur J Ophthalmol 9(3):158–64

    Google Scholar 

Download references

Acknowledgement

We are indebted to Dr. R. Fimmers from the Institute of Medical Biometrics, Computer Science, and Epidemiology for his help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Eter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eter, N., Spitznas, M., Sbeity, Z. et al. Evaluation of the blood–aqueous barrier by laser flare cell photometry following retinal cryocoagulation. Graefe's Arch Clin Exp Ophthalmol 242, 120–124 (2004). https://doi.org/10.1007/s00417-003-0806-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0806-6

Keywords

Navigation