Skip to main content

Advertisement

Log in

Stereoscopic visual evoked potentials in normal subjects and patients with open-angle glaucomas

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate stereoscopic visual evoked potentials (S-VEP) in normal controls and in patients with glaucomatous optic nerve damage.

Methods

Computer-generated dynamic random-dot stereograms were used to elicit cortical visual evoked potentials using wireless electric liquid crystal shutter glasses. Normal subjects (n=22) and patients with glaucoma (n=22) were investigated using five different disparities from 9 to 40 arc min. Statistical dependency of measurements with different stimulus at identical patients was adjusted for.

Results

Peak times of onset and offset response of S-VEP can be significantly delayed in glaucomas. A general linear regression model confirmed that differences between patients and normals depend on disparity. S-VEP onset shows no significant difference between controls and glaucomas at 9 arc min disparity. At high disparities, however, peak time of the onset response was significantly (p<0.01) delayed in glaucomas when compared with normals (normals: 125.8±13 ms, glaucomas: 148.2±25.6 ms at 40 arc min).

Conclusions

Visual evoked potential elicited by the onset of a random-dot stereogram can be used for objective measurement of stereoacuity in a clinical setting. Differences between controls and glaucomas in high and low disparities could indicate a stereo-specific deficit in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a–c

Similar content being viewed by others

References

  1. Bassi CJ, Galanis JC (1991) Binocular visual impairment in glaucoma. Ophthalmology 98:1406–1411

    CAS  PubMed  Google Scholar 

  2. Bergua A, Horn FK, Jünemann A, et al. (1999) Reduced stereoacuity in open-angle glaucomas. Ophthalmic Res 31 [Suppl 1]:S18

  3. Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque. J Physiol 357:219–240

    CAS  PubMed  Google Scholar 

  4. DeYoe EA, van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226

    PubMed  Google Scholar 

  5. Dunlop DB, Dunlop P, Fenelon R, Neill RA (1983) Evoked responses to distinct and nebulous stereoscopic stimuli. Austr J Ophthalmol 11:295–301

    CAS  Google Scholar 

  6. Essock EA, Fechtner RD, Zimmerman TJ, Krebs WK, Nussdorf JD (1996) Binocular function in early glaucoma. J Glaucoma 5:395–405

    CAS  PubMed  Google Scholar 

  7. Fischer B, Krüger J (1979) Disparity tuning and binocularity of single neurons in cat visual cortex. Expl Brain Res 35:1–8

    CAS  Google Scholar 

  8. Friedman JR, Kosmorsky GS, Burdfe RM (1985) Stereoacuity in patients with optic nerve disease. Arch Ophthalmol 103:37–38

    CAS  PubMed  Google Scholar 

  9. Fukai S (1984) Topographic visually evoked potentials induced by stereoptic stimulus. Br J Ophthalmol 69:612–617

    Google Scholar 

  10. Gockeln R, Hentschel A, Kretschmann U, Kretschmann U, Hülssner O, Winter R (1999) Local and global stereoscopic processing in low-tension and open-angle glaucoma. Invest Ophthalmol Vis Sci 40:S844

    Google Scholar 

  11. Herpes MJHB, Caberg J, Mol MF (1981) Human cerebral potentials evoked by moving dynamic random-dot stereograms. Electroencephalogr Clin Neurophysiol 52:50–56

    CAS  PubMed  Google Scholar 

  12. Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, Ritch R. An interocular comparison of the multifocal VEP (2000) A possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41:1580–1587

    Google Scholar 

  13. Horn FK, Bergua A, Jünemann A, Korth M (2000) Visual evoked potentials under luminance contrast and color contrast stimulation in glaucoma diagnosis. J Glaucoma 9:428–437

    CAS  PubMed  Google Scholar 

  14. Hubel DH, Wiesel TN (1970) Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225:41–42

    CAS  PubMed  Google Scholar 

  15. Hubel DH, Wiesel TN (1973) A re-examination of stereoscopic mechanisms in area 17 of the cat. J Physiol 232:29–30

    Google Scholar 

  16. Jones R (1977) Anomalies of disparity detection in the human visual system. J Physiol 264:621–640

    CAS  PubMed  Google Scholar 

  17. Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Tech J 39:1125–1162

    Google Scholar 

  18. Julesz B (1962) Towards the automation of binocular depth perception (AUTOMAP-I). In: Popplewell CM (ed) Proc IFIPS, 27 Aug–1Sept 1962, Munich, pp 439-444

  19. Julesz B (1964) Binocular depth perception without familiarity cues. Science 145:356–362

    CAS  Google Scholar 

  20. Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

  21. Julesz B, Kropfl W (1982) Binocular neurons and cyclopean visually evoked potentials in monkey man. Ann NY Acad Sci 388:37–44

    CAS  PubMed  Google Scholar 

  22. Kastner C, Fieger A, Heumann C (1996) MAREG and WINMAREG—a tool for marginal regression models. Statistical Software Newsletter in Computational Statistics and Data Analysis 24:237–241

    Google Scholar 

  23. Katz J, Zeger S, Liang KY (1994) Appropriate statistical methods to account for similarities in binary outcomes between fellow eyes. Invest Ophthalmol Vis Sci 35:2461–2465

    CAS  PubMed  Google Scholar 

  24. Kimura I, Maeda K, Akiyama K, Ohde H, Mashima Y, Oguchi Y (1998) The visual evoked potentials in binocular depth perception. Invest Ophthalmol Vis Sci 39:S185

    Google Scholar 

  25. Korth M, Kohl S, Martus P, Sembritzki O (2000) Motion-evoked pattern visual potentials in glaucoma. J Glaucoma 9:376–387

    CAS  PubMed  Google Scholar 

  26. Korth M, Nguyen NX, Jünemann A, Martus P, Jonas JJ (1994) VEP test of the blue-sensitive pathway in glaucoma. Invest Ophthalmol Vis Sci 35:2599–2610

    CAS  Google Scholar 

  27. Lehmann D, Julesz B (1978) Lateralized cortical potentials evoked in humans by dynamic random-dot stereograms. Vision Res 18:1265–1271

    Article  CAS  PubMed  Google Scholar 

  28. Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement and depth. J Neurosc 7:3416–3468

    PubMed  Google Scholar 

  29. Norcia A, Sutter EE, Tyler C (1985) Electrophysiological evidence for the existence of coarse and fine disparity mechanism in human. Vision Res 25:1603–1611

    CAS  PubMed  Google Scholar 

  30. Ogle KN (1952) Disparity limits of stereopsis. Arch Ophthalmol 48:50–60

    Google Scholar 

  31. Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity of striate and prestriate cortical neurons of behaving rhesus monkeys. J Neurophysiol 40:1392–1405

    CAS  PubMed  Google Scholar 

  32. Regan D, Spekreijse H (1970) Electrophysiological correlate of binocular depth perception in man. Nature 225:92–94

    CAS  PubMed  Google Scholar 

  33. Regan D, Beverly KI (1973) Electrophysiological evidence for existence of neurons sensitive to direction of depth movements. Nature 246:504–506

    CAS  PubMed  Google Scholar 

  34. Richards W (1971) Anomalous stereoscopic depth perception. J Opt Soc Am 61:410–414

    Google Scholar 

  35. Schiller PH, Malpeli JG (1978) Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol 41:788–797

    CAS  PubMed  Google Scholar 

  36. Schiller PH, Logothetis NK, Charles ER (1988) The role of color-opponent (C-O) and broadband (B-B) channels in vision. Soc Neurosci Abs 14:456

    Google Scholar 

  37. Skrandies W (1987) Visual persistence of stereoscopic stimuli: electric brain activity without perceptual correlate. Vision Res 27:2109–2118

    CAS  PubMed  Google Scholar 

  38. Skrandies W (1991) Contrast and stereoscopic visual stimuli yield lateralized scalp potential fields associated with different neural generators. Electroenceph Clin Neurophysiol 78:274–283

    Article  CAS  PubMed  Google Scholar 

  39. Skrandies W (2001) The processing of stereoscopic information in human visual cortex: psychophysical and electrophysiological evidence. Clin Electroencephalogr 32:152–159

    CAS  PubMed  Google Scholar 

  40. Skrandies W, Vomberg HE (1985) Stereoscopic stimuli activate different cortical neurons in man: electrophysiological evidence. Int J Psychophysiol 2:293–296

    Article  CAS  PubMed  Google Scholar 

  41. Skrandies W, Jedynak A (1999) Learning to see 3-D: psychophysics and brain activity. Neuroreport 10:249–253

    CAS  PubMed  Google Scholar 

  42. Tyler CW (1991) Cyclopean vision. In: Regan D (ed) Binocular vision and visual dysfunction, vol 9. Macmillan, London, pp 38–74

  43. Wesemann W, Klingenberger H, Rassow B (1987) Electrophysiological assesment of the human depth-perception threshold. Graefe’s Arch Clin Exp Ophthalmol 225:429–436

    Google Scholar 

Download references

Acknowledgements

This study was supported by DFG, grant SFB 539. We thank J. Jonas and W. Budde for classification of the optic nerve morphology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bergua.

Additional information

The authors have no commercial interest in the equipment used in this work. This paper was presented at the ARVO 2000 in poster form

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergua, A., Horn, F.K., Martus, P. et al. Stereoscopic visual evoked potentials in normal subjects and patients with open-angle glaucomas. Graefe's Arch Clin Exp Ophthalmol 242, 197–203 (2004). https://doi.org/10.1007/s00417-003-0797-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-003-0797-3

Keywords

Navigation