Skip to main content

Advertisement

Log in

Phenotypic and molecular diversities of spinocerebellar ataxia type 2 in Japan

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

We intended to clarify the phenotypic and molecular diversities of spinocerebellar ataxia type 2 (SCA2) in Japan.

Methods

DNA was extracted from the peripheral blood of 436 patients, including 126 patients with chronic neuropathy, 108 with amyotrophic lateral sclerosis, and 202 with cerebellar ataxia. We then PCR-amplified and sequenced the ATXN2 gene. The biopsied sural nerves of mutation-positive patients were subjected to light-microscopic and electron-microscopic analyses. Transfection analyses were performed using a Schwann cell line, IMS32.

Results

We found PCR-amplified products potentially corresponding to expanded CAG repeats in four patients. Two patients in the chronic neuropathy group had a full repeat expansion or an intermediate expansion (39 or 32 repeats), without limb ataxia. The sural nerve biopsy findings of the two patients included axonal neuropathy and mixed neuropathy (axonal changes with demyelination). Schwann cells harbored either cytoplasmic or nuclear inclusions on electron microscopic examination. Both patients recently exhibited pyramidal signs. In the third patient in the cerebellar ataxia group, we identified a novel 21-base duplication mutation near 22 CAG repeats (c.432_452dup). The transfection study revealed that the 21-base-duplication mutant Ataxin-2 proteins aggregated in IMS32 and rendered cells susceptible to oxidative stress, similar to a CAG-expanded mutant. The fourth patient, with 41 repeats, had ataxia and spasticity. The two patients with cerebellar ataxia also had peripheral neuropathy.

Conclusions

Patients with expanded CAG repeats can exhibit a neuropathy-dominant phenotype not described previously. The novel 21-base-duplication mutant seems to share the aggregation properties of polyglutamine-expanded mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284

    Article  CAS  Google Scholar 

  2. Naruse H, Matsukawa T, Ishiura H, Mitsui J, Takahashi Y, Takano H, Goto J, Toda T, Tsuji S (2019) Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations. Neurogenetics 20:65–71

    Article  CAS  Google Scholar 

  3. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rub U, Auburger G, Trojanowski JQ, Lee VM, Van Deerlin VM, Bonini NM, Gitler AD (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075

    Article  CAS  Google Scholar 

  4. Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W, Adam A, Singleton A, Koroshetz W, Waters C, Hardy J, Farrer M (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55:800–805

    Article  CAS  Google Scholar 

  5. Baumer D, East SZ, Tseu B, Zeman A, Hilton D, Talbot K, Ansorge O (2014) FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol 128:597–604

    Article  CAS  Google Scholar 

  6. Tazen S, Figueroa K, Kwan JY, Goldman J, Hunt A, Sampson J, Gutmann L, Pulst SM, Mitsumoto H, Kuo SH (2013) Amyotrophic lateral sclerosis and spinocerebellar ataxia type 2 in a family with full CAG repeat expansions of ATXN2. JAMA Neurol 70:1302–1304

    PubMed  PubMed Central  Google Scholar 

  7. Perretti A, Santoro L, Lanzillo B, Filla A, De Michele G, Barbieri F, Martino G, Ragno M, Cocozza S, Caruso G (1996) Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study and comparison between SCA1 and SCA2 patients. J Neurol Sci 142:45–53

    Article  CAS  Google Scholar 

  8. Filla A, De Michele G, Campanella G, Perretti A, Santoro L, Serlenga L, Ragno M, Calabrese O, Castaldo I, De Joanna G, Cocozza S (1996) Autosomal dominant cerebellar ataxia type I. Clinical and molecular study in 36 Italian families including a comparison between SCA1 and SCA2 phenotypes. J Neurol Sci 142:140–147

    Article  CAS  Google Scholar 

  9. Malandrini A, Galli L, Villanova M, Palmeri S, Parrotta E, DeFalco D, Cappelli M, Grieco GS, Renieri A, Guazzi G (1998) CAG repeat expansion in an italian family with spinocerebellar ataxia type 2 (SCA2): a clinical and genetic study. Eur Neurol 40:164–168

    Article  CAS  Google Scholar 

  10. Stezin A, Venkatesh SD, Thennarasu K, Purushottam M, Jain S, Yadav R, Pal PK (2018) Non-ataxic manifestations of Spinocerebellar ataxia-2, their determinants and predictors. J Neurol Sci 394:14–18

    Article  Google Scholar 

  11. Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, Tanaka M, Ishihara S, Tanabe H, Nozuma S, Okamoto Y, Matsuura E, Ohkubo R, Inamizu S, Shiraishi W, Yamasaki R, Ohyagi Y, Kira J, Oya Y, Yabe H, Nishikawa N, Tobisawa S, Matsuda N, Masuda M, Kugimoto C, Fukushima K, Yano S, Yoshimura J, Doi K, Nakagawa M, Morishita S, Tsuji S, Takashima H (2016) Mutations in MME cause an autosomal-recessive Charcot-Marie-Tooth disease type 2. Ann Neurol 79:659–672

  12. Hirano M, Nakamura Y, Saigoh K, Sakamoto H, Ueno S, Isono C, Mitsui Y, Kusunoki S (2015) VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation. Neurobiol Aging 36(1604):e1601-1606

    Google Scholar 

  13. Hirano M, Nakamura Y, Saigoh K, Sakamoto H, Ueno S, Isono C, Miyamoto K, Akamatsu M, Mitsui Y, Kusunoki S (2013) Mutations in the gene encoding p62 in Japanese patients with amyotrophic lateral sclerosis. Neurology 80:458–463

    Article  CAS  Google Scholar 

  14. Hirano M, Samukawa M, Isono C, Saigoh K, Nakamura Y, Kusunoki S (2018) Noncoding repeat expansions for ALS in Japan are associated with the ATXN8OS gene. Neurol Genet 4:e252

    Article  CAS  Google Scholar 

  15. Okazaki M, Suzuki H, Takahashi Y, Ishiura H, Goto J, Hirano M, Saigoh K, Nakamura Y, Naruse H, Mitsui J, Tsuji S, Kusunoki S (2017) Novel mutation in the SOD1 gene in a patient with early-onset, rapidly progressive amyotrophic lateral sclerosis. Neurol Clin Neurosci 5:189–191

    Article  CAS  Google Scholar 

  16. Hirano M, Matsumura R, Nakamura Y, Saigoh K, Sakamoto H, Ueno S, Inoue H, Kusunoki S (2017) Unexpectedly mild phenotype in an ataxic family with a two-base deletion in the APTX gene. J Neurol Sci 378:75–79

    Article  CAS  Google Scholar 

  17. Zhao Z, Hashiguchi A, Hu J, Sakiyama Y, Okamoto Y, Tokunaga S, Zhu L, Shen H, Takashima H (2012) Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy. Neurology 78:1644–1649

    Article  CAS  Google Scholar 

  18. Oka N, Kawasaki T, Unuma T, Shigematsu K, Sugiyama H (2013) Different profiles of onion bulb in CIDP and CMT1A in relation to extracellular matrix. Clin Neuropathol 32:406–412

    Article  Google Scholar 

  19. Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K, Sakai O (1995) Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. J Neurosci Res 41:279–290

    Article  CAS  Google Scholar 

  20. Linnemann C, Tezenas du Montcel S, Rakowicz M, Schmitz-Hubsch T, Szymanski S, Berciano J, van de Warrenburg BP, Pedersen K, Depondt C, Rola R, Klockgether T, Garcia A, Mutlu G, Schols L (2016) Peripheral Neuropathy in Spinocerebellar ataxia Type 1, 2, 3, and 6. Cerebellum 15:165–173

    Article  CAS  Google Scholar 

  21. Schroder JM, Sommer C (1991) Mitochondrial abnormalities in human sural nerves: fine structural evaluation of cases with mitochondrial myopathy, hereditary and non-hereditary neuropathies, and review of the literature. Acta Neuropathol 82:471–482

    Article  CAS  Google Scholar 

  22. Yasaki S, Tukamoto Y, Yuasa N, Ohnuki T, Yoshii F (2016) Possible coexisting autoimmunity in a variant case of familial amyotrophic lateral sclerosis associated with anti-GM2 immunoglobulin M antibody. Neurol Clin Neurosci 4:118–120

    Article  CAS  Google Scholar 

  23. Berciano J, Ferrer I (2005) Glial cell cytoplasmic inclusions in SCA2 do not express alpha-synuclein. J Neurol 252:742–744

    Article  Google Scholar 

  24. Ettle B, Schlachetzki JCM, Winkler J (2016) Oligodendroglia and myelin in neurodegenerative diseases: more than just bystanders? Mol Neurobiol 53:3046–3062

    Article  CAS  Google Scholar 

  25. Adachi H, Katsuno M, Minamiyama M, Waza M, Sang C, Nakagomi Y, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Yoshida M, Hashizume Y, Sobue G (2005) Widespread nuclear and cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain 128:659–670

    Article  Google Scholar 

  26. Huynh DP, Figueroa K, Hoang N, Pulst SM (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26:44–50

    Article  CAS  Google Scholar 

  27. Koyano S, Yagishita S, Kuroiwa Y, Tanaka F, Uchihara T (2014) Neuropathological staging of spinocerebellar ataxia type 2 by semiquantitative 1C2-positive neuron typing. Nuclear translocation of cytoplasmic 1C2 underlies disease progression of spinocerebellar ataxia type 2. Brain Pathol 24:599–606

    Article  CAS  Google Scholar 

  28. Corrado L, Mazzini L, Oggioni GD, Luciano B, Godi M, Brusco A, D’Alfonso S (2011) ATXN-2 CAG repeat expansions are interrupted in ALS patients. Hum Genet 130:575–580

    Article  CAS  Google Scholar 

  29. Laffita-Mesa JM, Rodriguez Pupo JM, Moreno Sera R, Vazquez Mojena Y, Kouri V, Laguna-Salvia L, Martinez-Godales M, Valdevila Figueira JA, Bauer PO, Rodriguez-Labrada R, Gonzalez Zaldivar Y, Paucar M, Svenningsson P, Velazquez Perez L (2013) De novo mutations in ataxin-2 gene and ALS risk. PLoS ONE 8:e70560

    Article  CAS  Google Scholar 

  30. Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PW, Thijs V, Dubois B, Matthijs G, van den Berg LH, Robberecht W (2011) Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76:2066–2072

    Article  Google Scholar 

  31. Isak B, Tankisi H, Johnsen B, Pugdahl K, Torvin MA, Finnerup NB, Christensen PB, Fuglsang-Frederiksen A (2016) Involvement of distal sensory nerves in amyotrophic lateral sclerosis. Muscle Nerve 54:1086–1092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Pulst for providing wild-type and mutant GFP-ATXN2 plasmids, and Dr. Watabe of the Tokyo Metropolitan Institute of Medical Science for providing IMS32.

Funding

This study was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MH19K07984 to MH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makito Hirano.

Ethics declarations

Financial disclosures

None of the authors have any conflict of interest, including financial, personal, or other relationships with other people or organizations within 3 years since beginning the work submitted, that could have inappropriately influenced or biased the work presented here.

Statistical analysis

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Appendix 1: Authors

Appendix 1: Authors

See Table 3.

Table 3 .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inada, R., Hirano, M., Oka, N. et al. Phenotypic and molecular diversities of spinocerebellar ataxia type 2 in Japan. J Neurol 268, 2933–2942 (2021). https://doi.org/10.1007/s00415-021-10467-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10467-z

Keywords

Navigation