Skip to main content

Advertisement

Log in

Hearing loss versus vestibular loss as contributors to cognitive dysfunction

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

In the last 5 years, there has been a surge in evidence that hearing loss (HL) may be a risk factor for cognitive dysfunction, including dementia. At the same time, there has been an increase in the number of studies implicating vestibular loss in cognitive dysfunction. Due to the fact that vestibular disorders often present with HL and other auditory disorders such as tinnitus, it has been suggested that, in many cases, what appears to be vestibular-related cognitive dysfunction may be due to HL (e.g., Dobbels et al. Front Neurol 11:710, 2020). This review analyses the studies of vestibular-related cognitive dysfunction which have controlled HL. It is suggested that despite the fact that many studies in the area have not controlled HL, many other studies have (~ 19/44 studies or 43%). Therefore, although there is certainly a need for further studies controlling HL, there is evidence to suggest that vestibular loss is associated with cognitive dysfunction, especially related to spatial memory. This is consistent with the overwhelming evidence from animal studies that the vestibular system transmits specific types of information about self-motion to structures such as the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Livingston G, Sommerlad A, Orgeta V et al (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734

    Article  PubMed  Google Scholar 

  2. Mukadam N, Sommerlad A, Huntly J et al (2019) Population attributable fractions for risk factors for dementia in low-income and middle-income countries: an analysis using cross-sectional survey data. Lancet Global Health 7:e596–e603

    Article  PubMed  Google Scholar 

  3. Michalowsky B, Hoffmann W, Kostev K (2019) Association between hearing and vision impairment and risk of dementia: results of a case–control study based on secondary data. Front Aging Neurosci 11:363

    Article  PubMed  PubMed Central  Google Scholar 

  4. Golub JS, Brickman AM, Ciarleglio AJ et al (2020) Association of subclinical hearing loss with cognitive performance. JAMA Otolaryngol Head Neck Surg 146(1):57–67

    Article  PubMed  Google Scholar 

  5. Loughrey DG, Parra MA, Lawlor BA (2019) Visual short-term memory binding deficit with age-related hearing loss in cognitively normal older adults. Sci Rep 9(1):12600

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu CM, Lee CT (2019) Association of hearing loss with dementia. JAMA Netw Open 2(7):e198112

    Article  PubMed  PubMed Central  Google Scholar 

  7. Curhan SG, Willett WC, Grodstein F et al (2020) Longitudinal study of self-reported hearing loss and subjective cognitive function decline in women. Alzheimers Dement 16(4):610–620

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hitier M, Zhang Y, Sato G et al (2020) Effects of selective electrical stimulation of the rat cochlea on hippocampal field potentials. Hear Res 395:108023

    Article  PubMed  Google Scholar 

  9. Segal M (1974) Convergence of sensory input on units in the hippocampal system of the rat. J Comp Physiol Psychol 87(1):91–99

    Article  CAS  PubMed  Google Scholar 

  10. Brankack J, Buzsáki G (1986) Hippocampal responses evoked by tooth pulp and acoustic stimulation: depth profiles and effect of behavior. Brain Res 378(2):303–314

    Article  CAS  PubMed  Google Scholar 

  11. Tamura R, Ono T, Fukuda M et al (1992) Spatial responsiveness of monkey hippocampal neurons to various visual and auditory stimuli. Hippocampus 2(3):307–322

    Article  CAS  PubMed  Google Scholar 

  12. Miller CL, Freedman R (1995) The activity of hippocampal interneurons and pyramidal cells during the response of the hippocampus to repeated auditory stimuli. Neurosci 69(2):371–381

    Article  CAS  Google Scholar 

  13. Goble TJ, Møller AR, Thompson LT (2009) Acute high-intensity sound exposure alters responses of place cells in hippocampus. Hear Res 253(1–2):52–59

    Article  CAS  PubMed  Google Scholar 

  14. Kraus KS, Mitra S, Jimenez Z et al (2010) Noise trauma impairs neurogenesis in the rat hippocampus. Neurosci 167(4):1216–1226

    Article  CAS  Google Scholar 

  15. Liu L, Xuan C, Shen P et al (2018) Hippocampal mechanisms underlying impairment in spatial learning long after establishment of noise-induced hearing loss in CBA mice. Front Syst Neurosci 12:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirste IZ, Kronenberg G, Walker TL et al (2015) Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Struct Funct 220(2):1221–1228

    Article  PubMed  Google Scholar 

  17. Zhang L, Wu C, Martel DT et al (2019) Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus 29(8):669–682

    CAS  PubMed  Google Scholar 

  18. Kapolowicz MR, Thompson LT (2020) Plasticity in limbic regions at early time points in experimental models of tinnitus. Front Syst Neurosci 13:88

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kraus KS, Canlon B (2012) Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 288(1–2):34–46

    Article  PubMed  Google Scholar 

  20. Agrawal Y, Smith PF, Rosenberg PB (2020) Vestibular impairment, cognitive decline and Alzheimer’s disease: balancing the evidence. Aging Ment Health 24(5):705–708

    Article  PubMed  Google Scholar 

  21. Previc FH (2013) Vestibular loss as a contributor to Alzheimer’s disease. Med Hypoth 80(4):360–367

    Article  Google Scholar 

  22. Smith PF, Zheng Y (2013) From ear to uncertainty: vestibular contributions to cognitive function. Front Integrat Neurosci 7:84

    Google Scholar 

  23. Besnard S, Lopez C, Brandt T et al. (eds) (2016) The vestibular system in cognitive and memory processes in mammals. Front Integr Neurosci. Frontiers Media, Lausanne. https://doi.org/10.3389/978-2-88919-744-6. pp. 1–246 (ebook)

  24. Harun A, Oh ES, Bigelow RT et al (2016) Vestibular impairment in dementia. Otol Neurotol 37(8):1137–1142

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wei EX, Oh ES, Harun A et al (2017) Vestibular loss predicts poorer spatial cognition in patients with Alzheimer’s disease. J Alzheimer’s Dis 61(3):995–1003

    Article  Google Scholar 

  26. Wei EX, Oh ES, Harun A et al (2019) Increased prevalence of vestibular loss in mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res 16(12):1143–1150

    Article  CAS  PubMed  Google Scholar 

  27. Wei EX, Oh ES, Harun A et al (2017) Saccular impairment in Alzheimer’s disease is associated with driving difficulty. Dement Geriatric Cog Dis 44(5–6):294–302

    Article  Google Scholar 

  28. Dobbels B, Peetermans O, Boon B et al (2019) Impact of bilateral vestibulopathy on spatial and nonspatial cognition: a systematic review. Ear Hear 40(4):757–765

    Article  PubMed  Google Scholar 

  29. Smith PF (2012) Interactions between the vestibular nucleus and the dorsal cochlear nucleus: implications for tinnitus. Hear Res 292:80–82

    Article  PubMed  Google Scholar 

  30. Hillier S, McDonnell M (2016) Is vestibular rehabilitation effective in improving dizziness and function after unilateral peripheral vestibular hypofunction? An abridged version of a Cochrane Review. Eur J Phys Rehab Med 52(4):541–556

    Google Scholar 

  31. Herdman SJ, Clendaniel R (2014) Vestibular rehabilitation, 4th edn. F.A. Davis, Philadelphia

    Google Scholar 

  32. Grimm RJ, Hemenway WG, Lebray PR et al (1989) The perilymph fistula syndrome defined in mild head trauma. Acta Otolaryngol Suppl 464:1–40

    Article  CAS  PubMed  Google Scholar 

  33. Risey J, Briner W (1990–1991) Dyscalculia in patients with vertigo. J Vestib Res 1:31–37

  34. Péruch P, Borel L, Gaunet F et al (1999) Spatial performance of unilateral vestibular defective patients in nonvisual versus visual navigation. J Vestib Res 9(1):37–47

    Article  PubMed  Google Scholar 

  35. Cohen HS (2000) Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res 10(1):7–15

    Article  CAS  PubMed  Google Scholar 

  36. Cohen HS, Kimball KT (2002) Improvements in path integration after vestibular rehabilitation. J Vest Res 12:47–51

    Article  Google Scholar 

  37. Black FO, Pesznecker S, Stallings V (2004) Permanent gentamicin vestibulotoxicity. Otol Neurotol 25(4):559–569

    Article  PubMed  Google Scholar 

  38. Redfern MS, Talkowski ME, Jennings JR et al (2004) Cognitive influences in postural control of patients with unilateral vestibular loss. Gait Posture 19(2):105–114

    Article  PubMed  Google Scholar 

  39. Borel L, Harlay F, Lopez C et al (2004) Walking performance of vestibular-defective patients before and after unilateral vestibular neurotomy. Behav Brain Res 150(1–2):191–200

    Article  PubMed  Google Scholar 

  40. Brandt T, Schautzer F, Hamilton DA et al (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128(11):2732–2741

    Article  PubMed  Google Scholar 

  41. Talkowski ME, Redfern MS, Jennings JR et al (2005) Cognitive requirements for vestibular and ocular motor processing in healthy adults and patients with unilateral vestibular lesions. J Cogn Neurosci 17(9):1432–1441

    Article  CAS  PubMed  Google Scholar 

  42. Sang FY, Jáuregui-Renaud K, Green DA et al (2006) Depersonalisation/derealisation symptoms in vestibular disease. J Neurol Neurosurg Psychiatry 77(6):760–766

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hufner K, Hamilton DA, Kalla R et al (2007) Spatial memory and hippocampal volume in humans with unilateral vestibular deafferentation. Hippocampus 17:471–485

    Article  PubMed  Google Scholar 

  44. Jáuregui-Renaud K, Sang FY, Gresty MA et al (2008) Depersonalisation/derealisation symptoms and updating orientation in patients with vestibular disease. J Neurol Neurosurg Psychiatry 79(3):276–283

    Article  PubMed  Google Scholar 

  45. Jáuregui-Renaud K, Ramos-Toledo V, Aguilar-Bolaños M et al (2008) Symptoms of detachment from the self or from the environment in patients with an acquired deficiency of the special senses. J Vestib Res 18(2–3):129–137

    Article  PubMed  Google Scholar 

  46. Guidetti G, Monzani D, Trebbi M et al (2008) Impaired navigation skills in patients with psychological distress and chronic peripheral vestibular hyofunction with vertigo. Acta Otorhinol Italica 28:21–25

    CAS  Google Scholar 

  47. Clement G, Fraysse M-J, Deguine O (2009) Mental respresentation of space in vestibular patients with otolithic or rotatory vertigo. NeuroReport 20:457–461

    Article  PubMed  Google Scholar 

  48. Nascimbeni A, Gaffuri A, Penno A et al (2010) Dual task interference during gait in patients with unilateral vestibular disorders. J Neuroeng Rehab 7:47

    Article  Google Scholar 

  49. Grabherr L, Cuffel C, Guyot J-P et al (2011) Mental transformation abilities in patients with unilateral and bilateral vestibular loss. Exp Brain Res 209:205–214

    Article  PubMed  Google Scholar 

  50. Péruch P, Lopez C, Redon-Zouiteni C et al (2011) Vestibular information is necessary for maintaining metric properties of representational space: evidence from mental imagery. Neuropsychologia 49(11):3136–3144

    Article  PubMed  Google Scholar 

  51. Gomez-Alvarez FB, Jauregui-Renaud K (2011) Psychological symptoms and spatial orientation during the first 3 months after acute unilateral vestibular loss. Arch Med Res 42:97–103

    Article  PubMed  Google Scholar 

  52. Candidi M, Micarelli A, Viziano A et al (2013) Impaired mental rotation in benign paroxysmal positional vertigo and acute vestibular neuritis. Front Human Neurosci 7:783

    Article  Google Scholar 

  53. Borel L, Redon-Zouiteni C, Cauvin P et al (2014) Unilateral vestibular loss impairs external space representation. PLoS ONE 9(2):e88576

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bigelow RT, Semenov YR, Trevino C et al (2015) Association between visuo-spatial ability and vestibular function in the Baltimore Longitudinal Study of Aging. J Am Geriat Soc 63(9):1837–1844

    Article  PubMed  Google Scholar 

  55. Jandl NM, Sprenger A, Wojak JF, Gottlich M, Munte TF, Kramer UM, Helmchen C (2015) Dissociable cerebellar activity during spatial navigation and visual memory on bilateral vestibular failure. Neurosci 305:257–267

    Article  CAS  Google Scholar 

  56. Semenov YR, Bigelow RT, Xue Q et al (2015) Association between vestibular and cognitive function in US adults: data from the National Health and Nutrition Examination Survey. J Gerontol Series A Biol Sci Med Sci 71(2):243–250

    Article  Google Scholar 

  57. Bigelow RT, Semenov YR, Du Lac S et al (2016) Vestibular vertigo and comorbid cognitive and psychiatric impairment: the 2008 national health interview survey. J Neurol Neurosurg Psych 87(4):310–319

    Article  Google Scholar 

  58. Harun A, Semenov YR, Agrawal Y (2015) Vestibular function and activities of daily living: analysis of the 1999 to 2004 National Health and Nutrition Examination Surveys. Gerontol Geriatric Med 2015:1–8

    Google Scholar 

  59. Kremmyda O, Huffner K, Flanagin VL et al (2016) Beyond dizziness: virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy. Front Human Neurosci 10:139

    Article  Google Scholar 

  60. Wackym PA, Balaban CD, Mackay HT et al (2016) Longitudinal cognitive and neurobehavioral functional outcomes before and after repairing otic capsule dehiscence. Otol Neurotol 37(1):70–82

    Article  PubMed  Google Scholar 

  61. Xie Y, Bigelow RT, Frankenthaler SF et al (2017) Vestibular loss in older adults is associated with impaired spatial navigation: data from the triangle completion task. Front Neurol 8:173

    Article  PubMed  PubMed Central  Google Scholar 

  62. Popp P, Wulff M, Finke K et al (2017) Cognitive deficits in patients with a chronic vestibular failure. J Neurol 264(3):554–563

    Article  PubMed  Google Scholar 

  63. Moser I, Vibert D, Caversaccio MD et al (2017) Impaired math achievement in patients with acute vestibular neuritis. Neuropsychologia 107:1–8

    Article  PubMed  Google Scholar 

  64. Moser I, Vibert D, Caversaccio MD et al (2017) Acute peripheral vestibular deficit increases the redundancy in random number generation. Exp Brain Res 235:627–637

    Article  PubMed  Google Scholar 

  65. Allum JHJ, Langewitz W, Sleptsova M et al (2017) Mental body transformation deficits in patients with chronic balance disorders. J Vest Res 27:113–125

    Article  CAS  Google Scholar 

  66. Cohen B, Provasi J, Leboucher P et al (2017) Effects of vestibular disorders on vestibular reflex and imagery. Exp Brain Res 235(7):2181–2188

    Article  CAS  PubMed  Google Scholar 

  67. Lofti Y, Rezazadeh N, Moossavi A et al (2017) Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment. Auris Nasus Larynx 44:700–707

    Article  Google Scholar 

  68. Lopez C, Nakul E, Preuss N et al (2018) Distorted own-body representations in patients with dizziness and during caloric vetibular stimulation. J Neurol 265(1):86–94

    Article  PubMed  Google Scholar 

  69. Balci B, Senyuva N, Akdal G (2018) Definition of balance and cognition related to disability levels in vestibular migraine patients. Arch Neuropsychiat 55:9–14

    Google Scholar 

  70. Lopez C, Elziere M (2018) Out-of-body experience in vestibular disorders—a prospective study of 210 patients with dizziness. Cortex 104:193–206

    Article  PubMed  Google Scholar 

  71. Sugaya N, Arai M, Goto F (2018) Changes in cognitive function in patients with intractable dizziness following vestibular rehabilitation. Sci Reps 8:9984

    Article  Google Scholar 

  72. Smith L, Wilkinson D, Bodani M et al (2019) Short-term memory impairment in vestibular patients can arise independently of psychiatric impairment, fatigue, and sleeplessness. J Neuropsychol 13(3):417–431

    Article  PubMed  Google Scholar 

  73. Dobbels B, Mertens G, Gilles A et al (2019) Cognitive function in acquired bilateral vestibulopathy: a cross-sectional study on cognition, hearing, and vestibular loss. Front Neurosci 13:340

    Article  PubMed  PubMed Central  Google Scholar 

  74. Deroualle D, Borel L, Tanguy B et al (2019) Unilateral vestibular deafferentation impairs embodied spatial cognition. J Neurol 266(Suppl. 1):S149–S159

    Article  Google Scholar 

  75. Liu YF, Locklear TD, Sharon JD et al (2019) Quantification of cognitive dysfunction in dizzy patients using the neuropsychological vertigo inventory. Otol Neurotol 40:e723-731

    Article  PubMed  Google Scholar 

  76. Guidetti G, Guidetti R, Manfredi M et al (2020) Vestibular pathology and spatial working memory. Acta Otorhinolaryngol Italica 40:72–78

    Article  Google Scholar 

  77. Bigelow RT, Semenov YR, Hoffman HJ et al (2020) Association between vertigo, cognitive and psychiatric conditions in US children: 2012 National Health Interview Survey. Int J Pediatr Otorhinolaryngol 130:109802

    Article  PubMed  Google Scholar 

  78. Lacroix E, Edwards MG, De Volder A et al (2020) Neuropsychological profiles of children with vestibular loss. J Vest Res 30:25–33

    Article  Google Scholar 

  79. Pineault K, Pearson D, Wei E et al (2020) Association between saccule and semi-circular canal impairments and cognitive performance among vestibular patients. Ear Hear 41:686–692

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dobbels B, Mertens G, Gilles A et al (2020) The virtual morris water task in 64 patients with bilateral vestibulopathy and the impact of hearing status. Front Neurol 11:710

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ayar DA, Kumral E, Celebisoy N (2020) Cognitive functions in acute vestibular loss. J Neurol 267:153–159

    Article  PubMed  PubMed Central  Google Scholar 

  82. Smith PF (2012) Dyscalculia and vestibular function. Med Hypoth 79:493–496

    Article  CAS  Google Scholar 

  83. Rogge AK, Röder B, Zech A et al (2017) Balance training improves memory and spatial cognition in healthy adults. Sci Rep 7(1):5661

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ding T, Yan A, Liu K (2019) What is noise-induced hearing loss? Brit J Hosp Med 80(9):525–529

    Article  Google Scholar 

  85. Stewart C, Yu Y, Huang J et al (2016) Effects of high intensity noise on the vestibular system in rats. Hear Res 335:118–127

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xu XD, Ding CR, Yu J et al (2016) The hidden dysfunction of otolithic organs in patients with profound sensorineural hearing loss. Hear Res 331:41–46

    Article  PubMed  Google Scholar 

  87. Viola P, Scarpa A, Pisani D et al (2020) Sub-clinical effects of chronic noise exposure on vestibular system. Transl Med UniSa 22:19–23

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Stewart CE, Bauer DS, Kanicki AC et al (2020) Intense noise exposure alters peripheral vestibular structures and physiology. J Neurophysiol 123(2):658–669

    Article  CAS  PubMed  Google Scholar 

  89. Stewart CE, Altschuler RA, Cacace AT et al (2020) Effects of noise exposure on the vestibular system: a systematic review. Front Neurol (Neuro-Otol) 11:593919

    Article  Google Scholar 

  90. Curthoys IS, Dlugaiczyk J (2020) Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation. Curr Opin Neurol 33(1):126–135

    Article  PubMed  Google Scholar 

  91. Curthoys IS, Grant JW, Pastras CJ et al (2019) A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 122(1):259–276

    Article  PubMed  Google Scholar 

  92. Curthoys IS, Grant JW, Burgess AM et al (2018) Otolith receptor mechanisms for vestibular-evoked myogenic potentials: a review. Front Neurol 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  93. Smith PF (2017) The vestibular system and cognition. Curr Opin Neurol 30(1):84–89

    Article  PubMed  Google Scholar 

  94. Hitier M, Besnard S, Smith PF (2014) Vestibular pathways involved in cognition. Front Integ Neurosci 8(59):1–16. https://doi.org/10.3389/fnint.2014.00059

    Article  Google Scholar 

  95. Smith PF, Geddes LH, Baek J-H et al (2010) Modulation of cognitive function by vestibular lesions and galvanic vestibular stimulation. Front Neurol 1(141):1–8

    Google Scholar 

  96. Smith PF, Ganesh S, Liu P (2013) A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J Neurosci Meth 220:85–91

    Article  Google Scholar 

  97. Smith PF (2018) On the application of multivariate statistical and data mining analyses to data in neuroscience. J Undergrad Neurosci Educ 16(2):R20–R32

    PubMed  PubMed Central  Google Scholar 

  98. Brandt T, Dieterich M (2019) Thalamocortical network: a core structure for integrative multimodal vestibular functions. Curr Opin Neurol 32(1):154–164

    Article  PubMed  Google Scholar 

  99. Agrawal Y, Merfeld D, Horak F, Redfern M, Manor B, Westlake K, Holstein G, Smith PF, Bhatt T, Bohnen N, Lipstiz L (2020) Aging, vestibular function and balance. Proceedings of a National Institute on Aging/National Institute of Deafness and Communication Disorders Workshop. J Gerontol A Med Sci 75(12): 2471–2480.

  100. Staab JP (2019) Psychiatric considerations in the management of dizzy patients. Adv Otorhinolaryngol 82:170–179

    PubMed  Google Scholar 

  101. Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 6:608–619

    Article  Google Scholar 

  103. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28(3):273–283

    Article  CAS  PubMed  Google Scholar 

  104. Hitier M, Zhang Y, Sato G, Besnard S, Zheng Y, Smith PF (2020) Stratification of hippocampal electrophysiological activation evoked by selective electrical stimulation of different linear and angular acceleration sensors in the rat peripheral vestibular system. Submitted

  105. Staab JP (2020) Persistent postural-perceptual dizziness. Semin Neurol 40(1):130–137

    Article  PubMed  Google Scholar 

  106. Liao JY, Lee CT, Lin TY et al (2020) Exploring prior diseases associated with incident late-onset Alzheimer’s disease dementia. PLoS ONE 15(1):e0228172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zheng Y, Darlington CL, Smith PF (2006) Impairment and recovery on a food foraging task following unilateral vestibular deafferentation in rat. Hippocampus 16:368–378

    Article  PubMed  Google Scholar 

  108. Zheng Y, Goddard M, Darlington CL et al (2007) Bilateral vestibular deafferentation impairs performance in a spatial forced alternation task in rats. Hippocampus 17:253–256

    Article  PubMed  Google Scholar 

  109. Zheng Y, Goddard M, Darlington CL et al (2009) Long-term deficits on a foraging task after bilateral vestibular deafferentation in rats. Hippocampus 19:480–486

    Article  PubMed  Google Scholar 

  110. Zheng Y, Balabhadrapatruni S, Munn O et al (2009) Evidence for deficits in a 5 choice serial reaction time task in rats with bilateral vestibular deafferentation. Behav Brain Res 203:113–117

    Article  PubMed  Google Scholar 

  111. Baek J-H, Zheng Y, Darlington CL et al (2010) Evidence that spatial memory deficits in rats following bilateral vestibular loss are probably permanent. Neurobiol Learn Mem 94:402–413

    Article  PubMed  Google Scholar 

  112. Brown DJ, Mukherjee P, Pastras CJ et al (2016) Sensitivity of the cochlear nerve to acoustic and electrical stimulation months after a vestibular labyrinthectomy in guinea pigs. Hear Res 335:18–24

    Article  CAS  PubMed  Google Scholar 

  113. Bosmans J, Joriseen C, Cras P et al (2020) Impact of hearing loss and vestibular decline on cognition in Alzheimer’s disease. A prospective longitudinal study protocol (Gehoor, Evenwicht en Cognitie). GECkO BMJ 10:e039601

    Google Scholar 

  114. Danneels M, Van Hecke R, Leyssens L et al (2020) 2BALANCE: a cognitive-motor dual task protocol for individuals with vestibular dysfunction. BMJ Open 10:e037138

    PubMed  PubMed Central  Google Scholar 

  115. Danneels M, Van Hecke R, Keppler H et al (2020) Psychometric properties of cognitive-motor dual task studies with the aim of developing a test protocol for persons with vestibular disorders: a systematic review. Ear Hear 41:3–16

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported over the years by grants from the New Zealand Neurological Foundation, the Health Research Council of New Zealand and the Marsden Fund of the Royal Society of New Zealand. I thank Professor Yuri Agrawal for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. Smith.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, P.F. Hearing loss versus vestibular loss as contributors to cognitive dysfunction. J Neurol 269, 87–99 (2022). https://doi.org/10.1007/s00415-020-10343-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10343-2

Keywords

Navigation