Strupp M, Kim J-S, Murofushi T et al (2017) Bilateral vestibulopathy: diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J Vestib Res 27:177–189. https://doi.org/10.3233/VES-170619
Article
PubMed
Google Scholar
Lucieer F, Duijn S, Van Rompaey V et al (2018) Full spectrum of reported symptoms of bilateral vestibulopathy needs further investigation—a systematic review. Front Neurol 9:352. https://doi.org/10.3389/fneur.2018.00352
Article
PubMed
PubMed Central
Google Scholar
Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 46:878–899. https://doi.org/10.1152/jn.1981.46.4.878
CAS
Article
Google Scholar
Grill E, Heuberger M, Strobl R et al (2018) Prevalence, determinants, and consequences of vestibular hypofunction. Results from the KORA-FF4 survey. Front Neurol. https://doi.org/10.3389/fneur.2018.01076
Article
PubMed
PubMed Central
Google Scholar
van de Berg R, van Tilburg M, Kingma H (2015) Bilateral vestibular hypofunction: challenges in establishing the diagnosis in adults. ORL J Otorhinolaryngol Relat Spec 77:197–218. https://doi.org/10.1159/000433549
Article
PubMed
Google Scholar
Halmagyi GM, Chen L, MacDougall HG et al (2017) The Video Head Impulse Test. Front Neurol 8:258. https://doi.org/10.3389/fneur.2017.00258
CAS
Article
PubMed
PubMed Central
Google Scholar
Herdman SJ, Tusa RJ, Blatt P et al (1998) Computerized dynamic visual acuity test in the assessment of vestibular deficits. Am J Otol 19:790–796
CAS
PubMed
Google Scholar
Barany R (1906) Untersuchungen uber den vom Vestibularapparat des Ohres reflectorisch ausgelosten rhythmischen Nystagmus und seine Begleiterscheinungen, 40th edn. Oscar Coblentz, Berlin
Google Scholar
Furman JM (2016) Rotational testing. In: Handbook of Clinical Neurology. Elsevier B.V., pp 177–186
Curthoys IS, Dlugaiczyk J (2020) Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation. Curr Opin Neurol 33:126–135
Article
Google Scholar
Strupp M, Grimberg J, Teufel J et al (2019) Worldwide survey on laboratory testing of vestibular function. Neurol Clin Pract. https://doi.org/10.1212/cpj.0000000000000744
Article
PubMed
PubMed Central
Google Scholar
Kingma H, Gauchard GC, De Waele C et al (2011) Stocktaking on the development of posturography for clinical use. J Vestib Res Equilib Orientat 21:117–125. https://doi.org/10.3233/VES-2011-0397
Article
Google Scholar
Ganança MM, Caovilla HH, Ganança FF (2010) Electronystagmography versus videonystagmography. Braz J Otorhinolaryngol 76:399–403
Article
Google Scholar
Baloh RW, Honrubia V, Kerber A (2011) Clinical neurophysiology of the vestibular system, 4th edn. Oxford University Press, Oxford
Google Scholar
Carpenter RHS (1988) Movements of the eyes, 2nd edn. Pion Limited, London
Google Scholar
Feynman RP (Richard P, Leighton RB, Sands ML (Matthew L (1989) The Feynman lectures on physics. Addison-Wesley
van Schooten KS, Sloot LH, Bruijn SM et al (2011) Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait. Gait Posture 33:656–660. https://doi.org/10.1016/j.gaitpost.2011.02.017
Article
PubMed
Google Scholar
MacDougall HG, Weber KP, McGarvie LA et al (2009) The video head impulse test: diagnostic accuracy in peripheral vestibulopathy. Neurology 73:1134–1141. https://doi.org/10.1212/WNL.0b013e3181bacf85
CAS
Article
PubMed
PubMed Central
Google Scholar
Chen L, Halmagyi GM (2020) Video head impulse testing: from bench to bedside. Semin Neurol 40:5–17. https://doi.org/10.1055/s-0039-3402063
Article
PubMed
Google Scholar
Yip CW, Glaser M, Frenzel C et al (2016) Comparison of the bedside head-impulse test with the video head-impulse test in a clinical practice setting: a prospective study of 500 outpatients. Front Neurol. https://doi.org/10.3389/fneur.2016.00058
Article
PubMed
PubMed Central
Google Scholar
Pogson JM, Taylor RL, McGarvie LA et al (2020) Head impulse compensatory saccades: visual dependence is most evident in bilateral vestibular loss. PLoS ONE 15:e0227406. https://doi.org/10.1371/journal.pone.0227406
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Nechel C, Bostan A, Duquesne U et al (2019) Visual input is the main trigger and parametric determinant for catchup saccades during video head impulse test in bilateral vestibular loss. Front Neurol 10:1138. https://doi.org/10.3389/fneur.2018.01138
Article
Google Scholar
Mantokoudis G, Saber Tehrani AS, Kattah JC et al (2015) Quantifying the vestibulo-ocular reflex with video-oculography: nature and frequency of artifacts. Audiol Neurotol 20:39–50. https://doi.org/10.1159/000362780
Article
Google Scholar
Trinidad-Ruiz G, Rey-Martinez J, Matiño-Soler E et al (2020) Relevance of artifact removal and number of stimuli for video head impulse test examination. Ear Hear. https://doi.org/10.1097/AUD.0000000000000849
Article
PubMed
Google Scholar
Strupp M, Kichler A, McGarvie L, Kremmyda O (2018) The video head impulse test: a right–left imbalance. J Neurol 265:40–43
CAS
Article
Google Scholar
Heuberger M, Grill E, Saǧlam M et al (2018) Usability of the video head impulse test: lessons from the population-based prospective KORA study. Front Neurol 9:659. https://doi.org/10.3389/fneur.2018.00659
Article
PubMed
PubMed Central
Google Scholar
Wenzel A, Hülse R, Thunsdorff C et al (2019) Reducing the number of impulses in video head impulse testing—it’s the quality not the numbers. Int J Pediatr Otorhinolaryngol 125:206–211. https://doi.org/10.1016/j.ijporl.2019.07.013
Article
PubMed
Google Scholar
Janky KL, Patterson JN, Shepard NT et al (2017) Effects of device on video head impulse test (vHIT) gain. J Am Acad Audiol 28:778–785
Article
Google Scholar
van Dooren TS, Starkov D, Lucieer FMP et al (2020) Comparison of three video head impulse test systems for the diagnosis of bilateral vestibulopathy. J Neurol. https://doi.org/10.1007/s00415-020-10060-w
Article
PubMed
PubMed Central
Google Scholar
Cleworth TW, Carpenter MG, Honegger F, Allum JHJ (2017) Differences in head impulse test results due to analysis techniques. J Vestib Res Equilib Orientat 27:163–172. https://doi.org/10.3233/VES-170614
Article
Google Scholar
Kim TS, Lim HW, Yang CJ et al (2018) Changes of video head impulse test results in lateral semicircular canal plane by different peak head velocities in patients with vestibular neuritis. Acta Otolaryngol 138:785–789. https://doi.org/10.1080/00016489.2018.1481523
Article
PubMed
Google Scholar
Judge PD, Rodriguez AI, Barin K, Janky KL (2018) Impact of target distance, target size, and visual acuity on the video head impulse test. Otolaryngol Head Neck Surg 159:739–742. https://doi.org/10.1177/0194599818779908
Article
PubMed
PubMed Central
Google Scholar
Agrawal Y, Van De Berg R, Wuyts F et al (2019) Presbyvestibulopathy: diagnostic criteria Consensus document of the classification committee of the Bárány Society. J Vestib Res Equilib Orientat 29:161–170. https://doi.org/10.3233/VES-190672
Article
Google Scholar
Wettstein VG, Weber KP, Bockisch CJ, Hegemann SC (2016) Compensatory saccades in head impulse testing influence the dynamic visual acuity of patients with unilateral peripheral vestibulopathy. In: Journal of Vestibular Research: Equilibrium and Orientation. IOS Press, pp 395–402
Mantokoudis G, Saber Tehrani AS, Wong AL et al (2016) Adaptation and compensation of vestibular responses following superior canal dehiscence surgery. Otol Neurotol 37:1399–1405. https://doi.org/10.1097/MAO.0000000000001196
Article
PubMed
PubMed Central
Google Scholar
Rey-Martinez J, Batuecas-Caletrio A, Matiño E, Perez Fernandez N (2015) HITCal: a software tool for analysis of video head impulse test responses. Acta Otolaryngol 135:886–894. https://doi.org/10.3109/00016489.2015.1035401
Article
PubMed
Google Scholar
Batuecas-Caletrio A, Santacruz-Ruiz S, Muñoz-Herrera A, Perez-Fernandez N (2014) The vestibulo-ocular reflex and subjective balance after vestibular schwannoma surgery. Laryngoscope 124:1431–1435. https://doi.org/10.1002/lary.24447
Article
PubMed
Google Scholar
Batuecas-Caletrio A, Rey-Martinez J, Trinidad-Ruiz G et al (2017) Vestibulo-ocular reflex stabilization after vestibular schwannoma surgery: a story told by saccades. Front Neurol. https://doi.org/10.3389/fneur.2017.00015
Article
PubMed
PubMed Central
Google Scholar
Guajardo-Vergara C, Perez-Fernandez N (2020) A new and faster method to assess vestibular compensation: a cross-sectional study. Laryngoscope. https://doi.org/10.1002/lary.28505
Article
PubMed
Google Scholar
Batuecas-Caletrio A, Trinidad-Ruiz G, Rey-Martinez J et al (2020) Oscillopsia in bilateral vestibular hypofunction. Ear Hear 41:323–329. https://doi.org/10.1097/AUD.0000000000000760
Article
PubMed
Google Scholar
Jay DR, Cane D, Howe S (2019) Age is a greater influence on small saccades than target size in normal subjects on the horizontal video head impulse test. Front Neurol. https://doi.org/10.3389/fneur.2019.00328
Article
PubMed
PubMed Central
Google Scholar
de Waele C, Shen Q, Magnani C, Curthoys IS (2017) A novel saccadic strategy revealed by suppression head impulse testing of patients with bilateral vestibular loss. Front Neurol 8:419. https://doi.org/10.3389/fneur.2017.00419
Article
PubMed
PubMed Central
Google Scholar
Shen Q, Magnani C, Sterkers O et al (2016) Saccadic velocity in the new suppression head impulse test: a new indicator of horizontal vestibular canal paresis and of vestibular compensation. Front Neurol 7:160. https://doi.org/10.3389/fneur.2016.00160
Article
PubMed
PubMed Central
Google Scholar
MacDougall HG, McGarvie LA, Halmagyi GM et al (2016) A new saccadic indicator of peripheral vestibular function based on the video head impulse test. Neurology 87:410–418. https://doi.org/10.1212/WNL.0000000000002827
Article
PubMed
PubMed Central
Google Scholar
Park JS, Lee JY, Nam W et al (2020) Comparing the suppression head impulse paradigm and the head impulse paradigm in vestibular neuritis. Otol Neurotol 41:E76–E82. https://doi.org/10.1097/MAO.0000000000002453
Article
PubMed
Google Scholar
Rey-Martinez J, Thomas-Arrizabalaga I, Espinosa-Sanchez JM et al (2018) Vestibulo-ocular reflex gain values in the suppression head impulse test of healthy subjects. Laryngoscope 128:2383–2389. https://doi.org/10.1002/lary.27107
Article
PubMed
Google Scholar
Schubert MC, Herdman SJ, Tusa RJ (2002) Vertical dynamic visual acuity in normal subjects and patients with vestibular hypofunction. Otol Neurotol 23:372–377. https://doi.org/10.1097/00129492-200205000-00025
Article
PubMed
Google Scholar
Tian J, Shubayev I, Demer J (2002) Dynamic visual acuity during passive and self-generated transient head rotation in normal and unilaterally vestibulopathic humans. Exp Brain Res 142:486–495. https://doi.org/10.1007/s00221-001-0959-7
Article
PubMed
Google Scholar
Vital D, Hegemann SCA, Straumann D et al (2010) A new dynamic visual acuity test to assess peripheral vestibular function. Arch Otolaryngol Neck Surg 136:686. https://doi.org/10.1001/archoto.2010.99
Article
Google Scholar
Li C, Beaumont JL, Rine RM et al (2014) Normative scores for the NIH toolbox dynamic visual acuity test from 3 to 85 years. Front Neurol 5:223. https://doi.org/10.3389/fneur.2014.00223
Article
PubMed
PubMed Central
Google Scholar
Verbecque E, Van Criekinge T, Vanloot D et al (2018) Dynamic Visual Acuity test while walking or running on treadmill: reliability and normative data. Gait Posture 65:137–142. https://doi.org/10.1016/j.gaitpost.2018.07.166
Article
PubMed
Google Scholar
Guinand N, Pijnenburg M, Janssen M, Kingma H (2012) Visual acuity while walking and oscillopsia severity in healthy subjects and patients with unilateral and bilateral vestibular function loss. Arch Otolaryngol Neck Surg 138:301. https://doi.org/10.1001/archoto.2012.4
Article
Google Scholar
Starkov D, Snelders M, Lucieer F, et al (2020) Bilateral vestibulopathy and age: experimental considerations for testing dynamic visual acuity on a treadmill. Manuscript submitted for publication
Ramat S, Colnaghi S, Boehler A et al (2012) A device for the functional evaluation of the VOR in clinical settings. Front Neurol 3:39. https://doi.org/10.3389/fneur.2012.00039
Article
PubMed
PubMed Central
Google Scholar
Colagiorgio P, Colnaghi S, Versino M, Ramat S (2013) A new tool for investigating the functional testing of the VOR. Front Neurol 4:165. https://doi.org/10.3389/fneur.2013.00165
Article
PubMed
PubMed Central
Google Scholar
Versino M, Colagiorgio P, Sacco S et al (2014) Reading while moving: the functional assessment of VOR. J Vestib Res 24:459–464. https://doi.org/10.3233/VES-140531
Article
PubMed
Google Scholar
Corallo G, Versino M, Mandalà M et al (2018) The functional head impulse test: preliminary data. J Neurol. https://doi.org/10.1007/s00415-018-8910-z
Article
PubMed
Google Scholar
Starkov D, Guinand N, Lucieer F et al (2019) Restoring the high-frequency dynamic visual acuity with a vestibular implant prototype in humans. Audiol Neurotol. https://doi.org/10.1159/000503677
Article
Google Scholar
van Dooren TS, Lucieer FMP, Duijn S et al (2019) The functional head impulse test to assess oscillopsia in bilateral vestibulopathy. Front Neurol 10:365. https://doi.org/10.3389/fneur.2019.00365
Article
PubMed
PubMed Central
Google Scholar
Dietrich H, Wuehr M (2019) Selective suppression of the vestibulo-ocular reflex during human locomotion. J Neurol. https://doi.org/10.1007/s00415-019-09352-7
Article
PubMed
Google Scholar
Brandt T, Strupp M, Benson J (1999) You are better off running than walking with acute vestibulopathy. Lancet 354:746. https://doi.org/10.1016/S0140-6736(99)03179-7
CAS
Article
PubMed
Google Scholar
Halmagyi GM, Curthoys IS (1988) A clinical sign of canal paresis. Arch Neurol 45:737–739. https://doi.org/10.1001/archneur.1988.00520310043015
CAS
Article
PubMed
Google Scholar
Press S, Goetzinger CP, Karlsen EA, Stevens JH (1979) A study of five parameters of calorically-induced nystagmus in the clinical situation. undefined
Della Santina CC, Potyagaylo V, Migliaccio AA et al (2005) Orientation of human semicircular canals measured by three-dimensional multiplanar CT reconstruction. JARO J Assoc Res Otolaryngol 6:191–206. https://doi.org/10.1007/s10162-005-0003-x
Article
PubMed
Google Scholar
BSA (2010) Recommended procedure: the caloric test. British Society of Audiology, Berkshire
Google Scholar
Lightfoot GR (2004) The origin of order effects in the results of the bi-thermal caloric test. Int J Audiol 43:276–282. https://doi.org/10.1080/14992020400050037
Article
PubMed
Google Scholar
Burnette E, Piker EG, Frank-Ito D (2018) Reevaluating order effects in the binaural bithermal caloric test. Am J Audiol 27:104–109. https://doi.org/10.1044/2017_AJA-17-0028
Article
PubMed
Google Scholar
Skipper C, Knight R, Cane D (2019) Nystagmus duration after caloric irrigations. Int J Audiol. https://doi.org/10.1080/14992027.2019.1703046
Article
PubMed
Google Scholar
Jacobson GP, Newman CW, Kartush JM (1993) Handbook of balance function testing, xii. Mosby Year Book, St. Louis
Google Scholar
Kim S, Oh Y-M, Koo J-W, Kim JS (2011) Bilateral vestibulopathy: clinical characteristics and diagnostic criteria. Otol Neurotol 32:812–817. https://doi.org/10.1097/MAO.0b013e31821a3b7d
Article
PubMed
Google Scholar
Greisen O (1972) Pseudocaloric nystagmus. Acta Otolaryngol 73:341–343. https://doi.org/10.3109/00016487209138950
CAS
Article
PubMed
Google Scholar
Möller C, Ödkvist LM (1989) The plasticity of compensatory Eye movements in bilateral vestibular loss: a study with low and high frequency rotatory tests. Acta Otolaryngol 108:345–354. https://doi.org/10.3109/00016488909125538
Article
PubMed
Google Scholar
Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, Oxford
Google Scholar
Van der Stappen A, Wuyts FL, Van de Heyning PH (2000) Computerized electronystagmography: normative data revisited. Acta Otolaryngol 120:724–730. https://doi.org/10.1080/000164800750000243
Article
Google Scholar
Möller C, Ödkvist L, White V, Cyr D (1990) The plasticity of compensatory eye movements in rotatory tests: 1. The effect of alertness and eye closure. Acta Otolaryngol 109:15–24. https://doi.org/10.3109/00016489009107410
Article
PubMed
Google Scholar
Barnes GR (1993) Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. Prog Neurobiol 41:435–472
CAS
Article
Google Scholar
Maes L, Dhooge I, De Vel E et al (2008) Normative data and test-retest reliability of the sinusoidal harmonic acceleration test, pseudorandom rotation test and velocity step test. J Vestib Res Equilib Orientat 18:197–208
Google Scholar
Konijnenberg JJ, Kingma H (1995) Visuo-vestibular interaction measurements: an alternative for rotation tests with better discriminatory power? Acta Otolaryngol 115:194–198. https://doi.org/10.3109/00016489509125226
Article
Google Scholar
Demer JL, Honrubia V, Baloh RW (1994) Dynamic visual acuity: a test for oscillopsia and vestibulo-ocular reflex function. In: American Journal of Otology. pp 340–347
Fischer AJEM, Huygen PLM, Folgering HT et al (1995) Vestibular hyperreactivity and hyperventilation after whiplash injury. J Neurol Sci 132:35–43. https://doi.org/10.1016/0022-510X(95)00118-L
CAS
Article
PubMed
Google Scholar
Theunissen EJJM, Huygen PLM, Folgering HT (1986) Vestibular hyperreactivity and hyperventilation. Clin Otolaryngol 11:161–169. https://doi.org/10.1111/j.1365-2273.1986.tb00123.x
CAS
Article
PubMed
Google Scholar
Hain TC, Cherchi M, Perez-Fernandez N (2018) The Gain-Time constant product quantifies total vestibular output in bilateral vestibular loss. Front Neurol. https://doi.org/10.3389/fneur.2018.00396
Article
PubMed
PubMed Central
Google Scholar
Baloh RW, Jacobson KM, Beykirch K, Honrubia V (1989) Horizontal vestibulo-ocular reflex after acute peripheral lesions. Acta Otolaryngol 108:323–327. https://doi.org/10.3109/00016488909139069
Article
Google Scholar
Jenkins HA, Honrubia V, Baloh RH (1982) Evaluation of multiple-frequency rotatory testing in patients with peripheral labyrinthine weakness. Am J Otolaryngol Neck Med Surg 3:182–188. https://doi.org/10.1016/S0196-0709(82)80052-5
CAS
Article
Google Scholar
Bouveresse A, Kalfane K, Gentine A, et al (1998) Pseudorandom rotational stimuli of the vestibulo-ocular reflex in humans: normal values of the transfer function. undefined
Jenkins HA, Goldberg J Test-retest reliability of the rotatory test in normal subjects. pp 190–195
Li C-W, Hooper RE, Cousins VC (1991) Sinusoidal harmonic acceleration testing in normal humans. Laryngoscope 101:192–196. https://doi.org/10.1288/00005537-199102000-00016
CAS
Article
PubMed
Google Scholar
Wolfe JW, Engelken EJ, Kos CM (1978) Low-frequency harmonic acceleration as a test of labyrinthine function: basic methods and illustrative cases. Otolaryngology. https://doi.org/10.1177/019459987808600132
Article
PubMed
Google Scholar
Hain T, Cherchi M, Yacovino D (2013) Bilateral Vestibular Loss. Semin Neurol 33:195–203. https://doi.org/10.1055/s-0033-1354597
Article
PubMed
Google Scholar
Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144
Article
Google Scholar
Noij KS, Herrmann BS, Rauch SD, Guinan JJ (2018) Toward optimizing vestibular evoked myogenic potentials: normalization reduces the need for strong neck muscle contraction. Audiol Neurotol 22:282–291. https://doi.org/10.1159/000485022
Article
Google Scholar
Noij KS, Van Tilburg MJ, Herrmann BS et al (2018) Toward optimizing VEMP: calculating VEMP inhibition depth with a generic template. Ear Hear 39:1199–1206. https://doi.org/10.1097/AUD.0000000000000579
Article
PubMed
Google Scholar
van Tilburg MJ, Herrmann BS, Rauch SD et al (2019) Normalizing cVEMPs: which method is the most effective? Ear Hear 40:878–886. https://doi.org/10.1097/AUD.0000000000000668
Article
PubMed
Google Scholar
Van Tilburg MJ, Herrmann BS, Guinan JJ, Rauch SD (2016) Increasing the stimulation rate reduces cVEMP testing time by more than half with no significant difference in threshold. Otol Neurotol 37:933–936. https://doi.org/10.1097/MAO.0000000000001096
Article
PubMed
Google Scholar
Van De Berg R, Rosengren S, Kingma H (2018) Laboratory examinations for the vestibular system. Curr Opin Neurol 31:111–116
Article
Google Scholar
Van Tilburg MJ, Herrmann BS, Guinan JJ, Rauch SD (2016) Serial cVEMP testing is sensitive to disease progression in ménière patients. Otol Neurotol 37:1614–1619. https://doi.org/10.1097/MAO.0000000000001213
Article
PubMed
Google Scholar
Dyball AC, Govender S, Taylor RL et al (2020) Bone-conducted vestibular and stretch reflexes in human neck muscles. Exp Brain Res. https://doi.org/10.1007/s00221-020-05798-8
Article
PubMed
Google Scholar
Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197. https://doi.org/10.1136/jnnp.57.2.190
CAS
Article
PubMed
PubMed Central
Google Scholar
Anupriya E, Kumar K (2019) Test–retest reliability of cervical and ocular vestibular evoked myogenic potential with simultaneous and sequential recording. Am J Audiol 28:414–421. https://doi.org/10.1044/2019_AJA-IND50-18-0087
Article
Google Scholar
Takahashi K, Tanaka O, Kudo Y et al (2019) Effects of stimulus conditions on vestibular evoked myogenic potentials in healthy subjects. Acta Otolaryngol 139:500–504. https://doi.org/10.1080/00016489.2019.1592224
Article
PubMed
Google Scholar
Papathanasiou ES (2019) Standardizing the way we perform and apply vestibular evoked myogenic potentials (VEMPs). Clin Neurophysiol Pract 4:37–38
Article
Google Scholar
Papathanasiou ES, Murofushi T, Akin FW, Colebatch JG (2014) International guidelines for the clinical application of cervical vestibular evoked myogenic potentials: an expert consensus report. Clin Neurophysiol 125:658–666
Article
Google Scholar
Piker EG, Jacobson GP, Burkard RF et al (2013) Effects of age on the tuning of the cVEMP and oVEMP. Ear Hear. https://doi.org/10.1097/AUD.0b013e31828fc9f2
Article
PubMed
PubMed Central
Google Scholar
Rosengren SM, Colebatch JG, Young AS et al (2019) Vestibular evoked myogenic potentials in practice: methods, pitfalls and clinical applications. Clin Neurophysiol Pract 4:47–68
Article
Google Scholar
Taylor RL, Welgampola MS, Nham B, Rosengren SM (2020) Vestibular-evoked myogenic potential testing in vestibular localization and diagnosis. Semin Neurol 40:018–032. https://doi.org/10.1055/s-0039-3402068
Article
Google Scholar
Papathanasiou ES, Straumann D (2019) Why and when to refer patients for vestibular evoked myogenic potentials: a critical review. Clin Neurophysiol 130:1539–1556
CAS
Article
Google Scholar
Fife TD, Satya-Murti S, Burkard RF, Carey JP (2018) Vestibular evoked myogenic potential testing Payment policy review for clinicians and payers. Neurol Clin Pract 8:129–134. https://doi.org/10.1212/CPJ.0000000000000430
Article
PubMed
PubMed Central
Google Scholar
Fife TD, Colebatch JG, Kerber KA et al (2017) Practice guideline: cervical and ocular vestibular evokedmyogenic potential testing: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 89:2288–2296. https://doi.org/10.1212/WNL.0000000000004690
Article
PubMed
PubMed Central
Google Scholar
Rizk HG, Liu YF, Strange CC et al (2020) Predictive value of vestibular evoked myogenic potentials in the diagnosis of Menière’s disease and vestibular migraine. Otol Neurotol. https://doi.org/10.1097/MAO.0000000000002636
Article
PubMed
Google Scholar
Kharkheli E, Japaridze S, Kevanishvili Z et al (2019) Correlation between vestibular evoked myogenic potentials and disease progression in Ménière’s disease. ORL 81:193–201. https://doi.org/10.1159/000496088
Article
PubMed
Google Scholar
Özdemir D, Akpınar ÇK, Küçüköner Ö et al (2020) Vestibular evoked myogenic potential (VEMP) results in migraine and migrainous vertigo. Acta Otolaryngol 140:140–143. https://doi.org/10.1080/00016489.2019.1701202
Article
PubMed
Google Scholar
Hu J, Chen Z, Zhang Y et al (2020) Vestibular dysfunction in patients with auditory neuropathy detected by vestibular evoked myogenic potentials. Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2020.02.002
Article
PubMed
Google Scholar
Li X, Gong S (2020) The effect of cochlear implantation on vestibular evoked myogenic potential in children. Laryngoscope. https://doi.org/10.1002/lary.28520
Article
PubMed
PubMed Central
Google Scholar
Merchant GR, Schulz KM, Patterson JN et al (2020) Effect of cochlear implantation on vestibular evoked myogenic potentials and wideband acoustic immittance. Ear Hear. https://doi.org/10.1097/AUD.0000000000000831
Article
PubMed
Google Scholar
Jomin G, Kumar K, Ebenezer A (2019) Comparison of vestibular evoked myogenic potential and dizziness handicap inventory in patient with peripheral vestibular lesions between pre and post vestibular rehabilitation. Int Tinnitus J 23:69–73. https://doi.org/10.5935/0946-5448.20190012
Article
PubMed
Google Scholar
Oya R, Imai T, Takenaka Y et al (2019) Clinical significance of cervical and ocular vestibular evoked myogenic potentials in benign paroxysmal positional vertigo: a meta-analysis. Eur Arch Oto-Rhino-Laryngol 276:3257–3265
Article
Google Scholar
Ward BK, van de Berg R, van Rompaey V, et al (2020) Superior Semicircular Canal Dehiscence Syndrome (SCDS). Manuscript submitted for publication
Verrecchia L, Brantberg K, Tawfique Z, Maoli D (2019) Diagnostic accuracy of ocular vestibular evoked myogenic potentials for superior canal dehiscence syndrome in a large cohort of dizzy patients. Ear Hear 40:287–294. https://doi.org/10.1097/AUD.0000000000000613
Article
PubMed
Google Scholar
Noij KS, Herrmann BS, Guinan JJ, Rauch SD (2019) Toward optimizing cVEMP: 2,000-Hz tone bursts improve the detection of superior canal dehiscence. Audiol Neurotol 23:335–344. https://doi.org/10.1159/000493721
Article
Google Scholar
Mach E (1875) Fundamentals of the theory of movement perception. Verlag von Wilhelm Engelmann, Leipzig
Google Scholar
Dupuits B, Pleshkov M, Lucieer F et al (2019) A new and faster test to assess vestibular perception. Front Neurol 10:707. https://doi.org/10.3389/fneur.2019.00707
Article
PubMed
PubMed Central
Google Scholar
Bermúdez Rey MC, Clark TK, Wang W et al (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:1–17. https://doi.org/10.3389/fneur.2016.00162
Article
Google Scholar
Kingma H (2005) Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function. BMC Ear Nose Throat Disord 88:82–87. https://doi.org/10.1186/1472-6815-5-Received
Article
Google Scholar
Grabherr L, Nicoucar K, Mast FW, Merfeld DM (2008) Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Exp Brain Res 186:677–681. https://doi.org/10.1007/s00221-008-1350-8
Article
PubMed
Google Scholar
Klein SA (2001) Measuring, estimating, and understanding the psychometric function: a commentary. Percept. Psychophys. 63:1421–1455
CAS
Article
Google Scholar
Leek MR (2001) Adaptive procedures in psychophysical research. Percept Psychophys 63:1279–1292. https://doi.org/10.3758/BF03194543
CAS
Article
PubMed
Google Scholar
Seemungal BM, Gunaratne IA, Fleming IO et al (2004) Perceptual and nystagmic thresholds of vestibular function in yaw. J Vestib Res 14:461–466
CAS
PubMed
Google Scholar
Hartmann M, Furrer S, Herzog MH et al (2013) Self-motion perception training: thresholds improve in the light but not in the dark. Exp Brain Res 226:231–240. https://doi.org/10.1007/s00221-013-3428-1
Article
PubMed
PubMed Central
Google Scholar
Gianna C, Heimbrand S, Gresty M (1996) Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function. In: Brain Research Bulletin. Elsevier Inc., pp 443–447
Gianna CC, Heimbrand S, Nakamura T, Gresty MA (1995) Thresholds for perception of lateral motion in normal subjects and patients with bilateral loss of vestibular function. Acta Otolaryngol 115:343–346. https://doi.org/10.3109/00016489509125266
Article
Google Scholar
Bremova T, Caushaj A, Ertl M et al (2016) Comparison of linear motion perception thresholds in vestibular migraine and Menière’s disease. Eur Arch Oto-Rhino-Laryngology 273:2931–2939. https://doi.org/10.1007/s00405-015-3835-y
Article
Google Scholar
Lewis RF, Priesol AJ, Nicoucar K et al (2011) Dynamic tilt thresholds are reduced in vestibular migraine. J Vestib Res Equilib Orientat 21:323–330. https://doi.org/10.3233/VES-2011-0422
Article
Google Scholar
Merfeld DM, Priesol A, Lee D et al (2014) Potential solutions to several vestibular challenges facing clinicians. J Vestib Res 154:2262–2265. https://doi.org/10.1016/j.pain.2013.06.005.Re-Thinking
Article
Google Scholar
Agrawal Y, Bremova T, Kremmyda O et al (2013) Clinical testing of otolith function: perceptual thresholds and myogenic potentials. JARO J Assoc Res Otolaryngol 14:905–915. https://doi.org/10.1007/s10162-013-0416-x
Article
PubMed
Google Scholar
van Stiphout, Lisa Florence L, Pleshkov M, van Rompaey V, et al (2020) Bilateral vestibulopathy decreases self-motion perception. Manuscript submitted for publication
Limviriyakul S, Luangsawang C, Suvansit K et al (2020) Video head impulse test and caloric test in definite Ménière’s disease. Eur Arch Oto-Rhino-Laryngology 277:679–686. https://doi.org/10.1007/s00405-019-05735-8
Article
Google Scholar
Hannigan IP, Welgampola MS, Watson SRD (2019) Dissociation of caloric and head impulse tests: a marker of Meniere’s disease. J Neurol
R M, RSM B, MM do CB-S, et al (2017) Sensitivity of caloric test and video head impulse as screening test for chronic vestibular complaints. Clinics 72
van Esch BF, Nobel-Hoff GEAJ, van Benthem PPG et al (2016) Determining vestibular hypofunction: start with the video-head impulse test. Eur Arch Oto-Rhino-Laryngology 273:3733–3739. https://doi.org/10.1007/s00405-016-4055-9
Article
Google Scholar
Fukushima M, Oya R, Nozaki K et al (2019) Vertical head impulse and caloric are complementary but react opposite to Meniere’s disease hydrops. Laryngoscope 129:1660–1666. https://doi.org/10.1002/lary.27580
Article
PubMed
Google Scholar
Shugyo M, Ito T, Shiozaki T et al (2020) Comparison of the video head impulse test results with caloric test in patients with Meniere’s disease and other vestibular disorders. Acta Otolaryngol. https://doi.org/10.1080/00016489.2020.1766700
Article
PubMed
Google Scholar
Rey-Martinez J, Altuna X, Cheng K et al (2020) Computing endolymph hydrodynamics during head impulse test on normal and hydropic vestibular labyrinth models. Front Neurol 11:289. https://doi.org/10.3389/fneur.2020.00289
Article
PubMed
PubMed Central
Google Scholar
Leng Y, Liu B (2020) Dissociation of caloric and video head impulse tests in patients with delayed endolymphatic hydrops. Front Neurol 11:362. https://doi.org/10.3389/fneur.2020.00362
Article
PubMed
PubMed Central
Google Scholar
Lucieer F, Vonk P, Guinand N et al (2016) Bilateral vestibular hypofunction: insights in etiologies, clinical subtypes, and diagnostics. Front Neurol. https://doi.org/10.3389/fneur.2016.00026
Article
PubMed
PubMed Central
Google Scholar