Between-group differences in gait parameters
Specific gait parameters such as stride length (mean ± SD; HD: 1.30 ± 0.25 m, controls: 1.52 ± 0.12 m, delta Δ = − 15%, p < 0.000) and gait velocity (HD: 1.20 ± 0.29 m/s, controls: 1.48 ± 0.16 m/s, Δ = − 19%, p < 0.000) were severely reduced, as expected. Stride time (HD: 1.11 ± 0.15 s, controls: 1.03 ± 0.08 s, Δ = + 7%, p = 0.008) and stance time (HD: 64.5 ± 2.55%, controls: 63.4 ± 1.16%, Δ = + 2%, p = 0.045) were significantly increased in patients with HD compared to controls (Fig. 1).
Group differences for parameters representing irregularity of gait were more pronounced in HD in comparison to controls: stride time CV (HD: 4.46 ± 1.55%, controls: 2.80 ± 0.81%, Δ = + 37%, p < 0.000), swing time CV (HD: 5.59 ± 2.51%, controls: 3.28 ± 1.43%, Δ = + 41%, p < 0.000), stance time CV (HD: 3.06 ± 1.26%, controls: 1.91 ± 0.91%, Δ = + 38%, p < 0.000), stride length CV (HD: 7.96 ± 2.13%, controls: 6.59 ± 3.08%, Δ = + 17%, p = 0.001), and gait velocity CV (HD: 8.79 ± 2.43%, controls: 7.39 ± 2.84%, Δ = + 16%, p = 0.001) (Fig. 2). Cohen’s d effect sizes showed the largest differences between groups for the gait variability parameter stride time CV (Cohen’s d = 1.345), followed by swing time CV (d = 1.129), and stance time CV (d = 1.040). The effect size for stride length (d = 1.149) and gait velocity (d = 1.212) was strong but did not reach those of stride time CV (Supplementary Table T1).
Correlation analysis between gait parameters and clinical scores
Parameters representing gait variability showed moderate to strong correlations to UHDRS TMS: stride time CV (rSp = 0.676, p ≤ 0.000), stance time CV (rSp = 0.690, p ≤ 0.000), swing time CV (rSp = 0.595, p ≤ 0.000), stride length CV (rSp = 0.416, p = 0.006), and gait velocity CV (rSp = 0.579, p ≤ 0.000). Stride length and gait velocity showed moderate inverse correlations to UHDRS TMS: stride length (rSp = − 0.549, p ≤ 0.000), and gait velocity (rSp = − 0.478, p = 0.001).
Furthermore, the objective gait variability measures reflected the patients’ functional abilities according to TFC by moderate inverse correlations: stride time CV (rSp = − 0.555, p ≤ 0.000), stance time CV (rSp = − 0.521, p ≤ 0.000), swing time CV (rSp = − 0.561, p ≤ 0.000), stride length CV (rSp = − 0.468, p = 0.002), and gait velocity CV (rSp = − 0.628, p ≤ 0.000). Graphs to this correlation analysis are presented in Figs. 2 and 3. Group comparisons between TFC subgroups (early, moderate, advanced) revealed highly significant differences in stride time CV (p < 0.001, d = 1.601), stance time CV (p = 0.002, d = 1.214), swing time CV (p = 0.001, d = 1.347), stride length CV (p = 0.010, d = 0.935), and gait velocity CV (p < 0.000, d = 1.613). Dunn-Bonferroni post-hoc tests showed differences between the TFC subgroups for stride time CV (early vs. advanced: p < 0.000, moderate vs. advanced: p = 0.045), stance time CV (early vs. advanced: p = 0.001), swing time CV (early vs. advanced: p < 0.000), stride length CV (early vs. advanced: p = 0.008), and gait velocity CV (early vs. advanced: p < 0.000) (Fig. 3b). Importantly, stride time CV was the sole parameter detecting differences between moderate and advanced HD patients.