Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952
CAS
PubMed
Google Scholar
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391(10130):1622–1636
PubMed
Google Scholar
Farjam M, Zhang GX, Ciric B, Rostami A (2015) Emerging immunopharmacological targets in multiple sclerosis. J Neurol Sci 358(1–2):22–30
CAS
PubMed
PubMed Central
Google Scholar
Blauth K, Owens GP, Bennett JL (2015) The ins and outs of B cells in multiple sclerosis. Front Immunol 6:565
PubMed
PubMed Central
Google Scholar
Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558
CAS
PubMed
Google Scholar
Saleem S, Anwar A, Fayyaz M, Anwer F, Anwar F (2019) An overview of therapeutic options in relapsing-remitting multiple sclerosis. Cureus 11(7):e5246
PubMed
PubMed Central
Google Scholar
EMA. Mayzent siponimod—Summary of opinion (initial authorisation). https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-mayzent_en.pdf. Accessed Nov 2019
Garg N, Smith TW (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav 5(9):e00362
PubMed
PubMed Central
Google Scholar
Marciniak A, Camp SM, Garcia JGN, Polt R (2018) An update on sphingosine-1-phosphate receptor 1 modulators. Bioorg Med Chem Lett 28(23–24):3585–3591
CAS
PubMed
PubMed Central
Google Scholar
Avasarala J, Jain S, Urrea-Mendoza E (2017) Approach to fingolimod-induced lymphopenia in multiple sclerosis patients: do we have a roadmap? J Clin Pharmacol 57(11):1415–1418
CAS
PubMed
Google Scholar
Comi G, Cook S, Giovannoni G, Rieckmann P, Sorensen PS, Vermersch P, Galazka A, Nolting A, Hicking C, Dangond F (2019) Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult Scler Relat Disord 29:168–174
PubMed
Google Scholar
Francis G, Kappos L, O’Connor P, Collins W, Tang D, Mercier F, Cohen JA (2014) Temporal profile of lymphocyte counts and relationship with infections with fingolimod therapy. Mult Scler 20(4):471–480
CAS
PubMed
Google Scholar
Focosi D, Tuccori M, Maggi F (2019) Progressive multifocal leukoencephalopathy and anti-CD20 monoclonal antibodies: what do we know after 20 years of rituximab. Rev Med Virol 29:e2077
PubMed
Google Scholar
EMA. Tysabri—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/tysabri-epar-product-information_en.pdf. Accessed 28 Nov 2019
HHS. Common Terminology criteria for adverse events (CTCAE) 5.0. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 5 Dec 2019
Trepel F (1974) Number and distribution of lymphocytes in man. A critical analysis. Klin Wochenschr 52(11):511–515
CAS
PubMed
Google Scholar
Westermann J, Schwinzer R, Jecker P, Pabst R (1990) Lymphocyte subsets in the blood. The influence of splenectomy, splenic autotransplantation, ageing, and the site of blood sampling on the number of B, T, CD4+, and CD8+ lymphocytes in the rat. Scand J Immunol 31(3):327–334
CAS
PubMed
Google Scholar
FDA. Lemtrada label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103948s5158lbl.pdf. Accessed 9 Dec 2019
EMA. Lemtrada—product information. https://www.ema.europa.eu/en/documents/referral/lemtrada-article-20-procedure-product-information_en.pdf. Accessed 9 Dec 2019
Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, Havrdova E, Selmaj KW, Weiner HL, Fisher E, Brinar VV, Giovannoni G, Stojanovic M, Ertik BI, Lake SL, Margolin DH, Panzara MA, Compston DA, Investigators C-MI (2012) Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380(9856):1819–1828
CAS
PubMed
Google Scholar
Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, Schippling S, Selmaj KW, Traboulsee A, Compston DAS, Margolin DH, Thangavelu K, Rodriguez CE, Jody D, Hogan RJ, Xenopoulos P, Panzara MA, Coles AJ, Care-Ms I, Investigators C (2017) Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89(11):1107–1116
CAS
PubMed
PubMed Central
Google Scholar
Vakrakou AG, Tzanetakos D, Valsami S, Grigoriou E, Psarra K, Tzartos J, Anagnostouli M, Andreadou E, Evangelopoulos ME, Koutsis G, Chrysovitsanou C, Gialafos E, Dimitrakopoulos A, Stefanis L, Kilidireas C (2018) A case of Alemtuzumab-induced neutropenia in multiple sclerosis in association with the expansion of large granular lymphocytes. BMC Neurol 18(1):178
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Turner MJ, Shields J, Gale MS, Hutto E, Roberts BL, Siders WM, Kaplan JM (2009) Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology 128(2):260–270
CAS
PubMed
PubMed Central
Google Scholar
von Kutzleben S, Pryce G, Giovannoni G, Baker D (2017) Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology 150(4):444–455
Google Scholar
Ruck T, Pfeuffer S, Schulte-Mecklenbeck A, Gross CC, Lindner M, Metze D, Ehrchen J, Sondermann W, Pul R, Kleinschnitz C, Wiendl H, Meuth SG, Klotz L (2018) Vitiligo after alemtuzumab treatment: secondary autoimmunity is not all about B cells. Neurology 91(24):e2233–e2237
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann J, Buhl T, Muller M (2017) Alopecia universalis following alemtuzumab treatment in multiple sclerosis: a barely recognized manifestation of secondary autoimmunity—report of a case and review of the literature. Front Neurol 8:569
PubMed
PubMed Central
Google Scholar
EMA. Mavenclad—assessment report. https://www.ema.europa.eu/en/documents/assessment-report/mavenclad-epar-public-assessment-report_en.pdf. Accessed 29 Nov 2019
Ceronie B, Jacobs BM, Baker D, Dubuisson N, Mao Z, Ammoscato F, Lock H, Longhurst HJ, Giovannoni G, Schmierer K (2018) Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J Neurol 265(5):1199–1209
CAS
PubMed
PubMed Central
Google Scholar
Baker D, Herrod SS, Alvarez-Gonzalez C, Zalewski L, Albor C, Schmierer K (2017) Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm 4(4):e360
PubMed
PubMed Central
Google Scholar
Savic RM, Novakovic AM, Ekblom M, Munafo A, Karlsson MO (2017) Population pharmacokinetics of cladribine in patients with multiple sclerosis. Clin Pharmacokinet 56(10):1245–1253
CAS
PubMed
PubMed Central
Google Scholar
Baker D, Pryce G, Herrod SS, Schmierer K (2019) Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord 30:176–186
PubMed
Google Scholar
Stuve O, Soelberg Soerensen P, Leist T, Giovannoni G, Hyvert Y, Damian D, Dangond F, Boschert U (2019) Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Ther Adv Neurol Disord 12:1756286419854986
CAS
PubMed
PubMed Central
Google Scholar
Bruck J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K (2018) A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 27(6):611–624
PubMed
Google Scholar
Herrmann AK, Wullner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A (2019) Dimethyl fumarate alters intracellular Ca(2+) handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med 141:338–347
CAS
PubMed
Google Scholar
Fox RJ, Chan A, Gold R, Phillips JT, Selmaj K, Chang I, Novas M, Rana J, Marantz JL (2016) Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract 6(3):220–229
PubMed
PubMed Central
Google Scholar
Longbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH (2015) Dimethyl fumarate-associated lymphopenia: risk factors and clinical significance. Mult Scler J Exp Transl Clin 1:2055217315596994
PubMed
PubMed Central
Google Scholar
Longbrake EE, Cross AH (2015) Dimethyl fumarate associated lymphopenia in clinical practice. Mult Scler 21(6):796–797
PubMed
Google Scholar
Morales FS, Koralnik IJ, Gautam S, Samaan S, Sloane JA (2020) Risk factors for lymphopenia in patients with relapsing-remitting multiple sclerosis treated with dimethyl fumarate. J Neurol 267(1):125–131
CAS
PubMed
Google Scholar
FDA. Tecifidera label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204063lbl.pdf. Accessed 9 Dec 2019
Brinkmann V (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158(5):1173–1182
CAS
PubMed
PubMed Central
Google Scholar
Kappos L, Radue EW, O‘Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, Group FS (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401
CAS
PubMed
Google Scholar
Comi G, Hartung HP, Bakshi R, Williams IM, Wiendl H (2017) Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 77:1755–1768
CAS
PubMed
PubMed Central
Google Scholar
FDA. Gilenya (fingolimod) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022527s008lbl.pdf. Accessed 9 Dec 2019
EMA. Gilenya—product information. https://www.ema.europa.eu/en/documents/product-information/gilenya-epar-product-information_en.pdf. Accessed 28 Nov 2019
CHMP. CHMP summary of positive opinion for Mayzent. https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-mayzent_en.pdf. Accessed 9 Dec 2019
https://www.tga.gov.au/apm-summary/mayzent
FDA. Mayzent (siponimod) label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf. Accessed 9 Dec 2019
Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, Vermersch P, Arnold DL, Arnould S, Scherz T, Wolf C, Wallstrom E, Dahlke F, Investigators EC (2018) Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391(10127):1263–1273
CAS
PubMed
Google Scholar
Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, Investigators A (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910
CAS
PubMed
Google Scholar
Saure C, Warnke C, Zohren F, Schroeder T, Bruns I, Cadeddu RP, Weigelt C, Fischer U, Kobbe G, Hartung HP, Adams O, Kieseier BC, Haas R (2011) Natalizumab and impedance of the homing of CD34+ hematopoietic progenitors. Arch Neurol 68(11):1428–1431
PubMed
Google Scholar
Warnke C, Smolianov V, Dehmel T, Andree M, Hengel H, Zohren F, Arendt G, Wiendl H, Haas R, Hartung HP, Adams O, Kieseier BC (2011) CD34+ progenitor cells mobilized by natalizumab are not a relevant reservoir for JC virus. Mult Scler 17(2):151–156
PubMed
Google Scholar
Koudriavtseva T, Sbardella E, Trento E, Bordignon V, D’Agosto G, Cordiali-Fei P (2014) Long-term follow-up of peripheral lymphocyte subsets in a cohort of multiple sclerosis patients treated with natalizumab. Clin Exp Immunol 176(3):320–326
CAS
PubMed
PubMed Central
Google Scholar
Stuve O, Marra CM, Bar-Or A, Niino M, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Jerome KR, Cook L, Grand’Maison F, Hemmer B, Monson NL, Racke MK (2006) Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 63(10):1383–1387
PubMed
Google Scholar
Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O (2019) Immunological aspects of approved MS therapeutics. Front Immunol 10:1564
CAS
PubMed
PubMed Central
Google Scholar
Sorensen PS, Blinkenberg M (2016) The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord 9(1):44–52
CAS
PubMed
PubMed Central
Google Scholar
Gingele S, Jacobus TL, Konen FF, Hummert MW, Suhs KW, Schwenkenbecher P, Ahlbrecht J, Mohn N, Muschen LH, Bonig L, Alvermann S, Schmidt RE, Stangel M, Jacobs R, Skripuletz T (2018) Ocrelizumab depletes CD20(+) T cells in multiple sclerosis patients. Cells 8(1):12
PubMed Central
Google Scholar
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, Opera I, Investigators OIC (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234
CAS
PubMed
Google Scholar
EMA. Ocrevus—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf. Accessed 9 Dec 2019
Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, Hauser S, Waubant E, Vollmer T, Panitch H, Zhang J, Chin P, Smith CH, Group OT (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66(4):460–471
CAS
PubMed
Google Scholar
Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH, Group HT (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688
CAS
PubMed
Google Scholar
Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74(6):659–674
CAS
PubMed
PubMed Central
Google Scholar
EMA. Aubagio—EPAR—product information. https://www.ema.europa.eu/en/documents/product-information/aubagio-epar-product-information_en.pdf. Accessed 9 Dec 2019
Comi G, Miller AE, Benamor M, Truffinet P, Poole EM, Freedman MS (2019) Characterizing lymphocyte counts and infection rates with long-term teriflunomide treatment: pooled analysis of clinical trials. Mult Scler 7:1352458519851981
Google Scholar
EMA. Tecfidera—product information. https://www.ema.europa.eu/en/documents/product-information/tecfidera-epar-product-information_en.pdf. Accessed 29 Nov 2019
Epstein DJ, Dunn J, Deresinski S (2018) Infectious complications of multiple sclerosis therapies: implications for screening, prophylaxis, and management. Open Forum Infect Dis 5(8):ofy174
PubMed
PubMed Central
Google Scholar
Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12(4):217–233
CAS
PubMed
Google Scholar
Seto H, Nishimura M, Minamiji K, Miyoshi S, Mori H, Kanazawa K, Yasuda H (2016) Disseminated cryptococcosis in a 63-year-old patient with multiple sclerosis treated with fingolimod. Intern Med 55(22):3383–3386
PubMed
PubMed Central
Google Scholar
Ciardi MR, Iannetta M, Zingaropoli MA, Salpini R, Aragri M, Annecca R, Pontecorvo S, Altieri M, Russo G, Svicher V, Mastroianni CM, Vullo V (2019) Reactivation of hepatitis B virus with immune-escape mutations after ocrelizumab treatment for multiple sclerosis. Open Forum Infect Dis 6(1):ofy356
PubMed
Google Scholar
KKNMS. Qualitätshandbuch MS/NMOSD 2019. https://www.kompetenznetz-multiplesklerose.de/fachinformationen/qualitaetshandbuch/. Accessed 28 Nov 2019
Dudek MIR, Thies K, Kammenhuber S, Bosel J, Rosche J (2019) HSV-2-encephalitis in a patient with multiple sclerosis treated with ocrelizumab. J Neurol 266(9):2322–2323
CAS
PubMed
Google Scholar
Canham LJW, Manara A, Fawcett J, Rolinski M, Mortimer A, Inglis KEA, Cottrell DA (2018) Mortality from Listeria monocytogenes meningoencephalitis following escalation to alemtuzumab therapy for relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 24:38–41
CAS
PubMed
Google Scholar
Holmoy T, von der Lippe H, Leegaard TM (2017) Listeria monocytogenes infection associated with alemtuzumab—a case for better preventive strategies. BMC Neurol 17(1):65
PubMed
PubMed Central
Google Scholar
Rau D, Lang M, Harth A, Naumann M, Weber F, Tumani H, Bayas A (2015) Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis-report of two cases. Int J Mol Sci 16(7):14669–14676
CAS
PubMed
PubMed Central
Google Scholar
Ruggieri S, Logoteta A, Martini G, Bozzao A, De Giglio L (2018) Listeria monocytogenes-induced rhombencephalitis in a patient with multiple sclerosis treated with dimethyl fumarate. JAMA Neurol 75(6):762–763
PubMed
Google Scholar
Major EO, Yousry TA, Clifford DB (2018) Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. Lancet Neurol 17(5):467–480
CAS
PubMed
Google Scholar
Vukusic S, Rollot F, Casey R, Pique J, Marignier R, Mathey G, Edan G, Brassat D, Ruet A, De Seze J, Maillart E, Zephir H, Labauge P, Derache N, Lebrun-Frenay C, Moreau T, Wiertlewski S, Berger E, Moisset X, Rico-Lamy A, Stankoff B, Bensa C, Thouvenot E, Heinzlef O, Al-Khedr A, Bourre B, Vaillant M, Cabre P, Montcuquet A, Wahab A, Camdessanche JP, Tourbah A, Guennoc AM, Hankiewicz K, Patry I, Nifle C, Maubeuge N, Labeyrie C, Vermersch P, Laplaud DA, Investigators O (2019) Progressive multifocal leukoencephalopathy incidence and risk stratification among natalizumab users in France. JAMA Neurol e192670. https://doi.org/10.1001/jamaneurol.2019.2670
Article
Google Scholar
Pavlovic D, Patel MA, Patera AC, Peterson I (2018) Progressive multifocal leukoencephalopathy C. T cell deficiencies as a common risk factor for drug associated progressive multifocal leukoencephalopathy. Immunobiology 223(6–7):508–517
CAS
PubMed
Google Scholar
Misbah SA (2017) Progressive multi-focal leucoencephalopathy—driven from rarity to clinical mainstream by iatrogenic immunodeficiency. Clin Exp Immunol 188(3):342–352
CAS
PubMed
PubMed Central
Google Scholar
Berger JR, Cree BA, Greenberg B, Hemmer B, Ward BJ, Dong VM, Merschhemke M (2018) Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology 90(20):e1815–e1821
PubMed
PubMed Central
Google Scholar
Nakahara J, Tomaske L, Kume K, Takata T, Kamada M, Deguchi K, Kufukihara K, Schneider R, Gold R, Ayzenberg I (2019) Three cases of non-carryover fingolimod-PML: is the risk in Japan increased? Neurol Neuroimmunol Neuroinflamm 6(3):e559
PubMed
PubMed Central
Google Scholar
Briner M, Bagnoud M, Miclea A, Friedli C, Diem L, Chan A, Hoepner R, Salmen A (2019) Time course of lymphocyte repopulation after dimethyl fumarate-induced grade 3 lymphopenia: contribution of patient age. Ther Adv Neurol Disord 12:1756286419843450
PubMed
PubMed Central
Google Scholar
Baldassari LE, Feng J, Macaron G, Planchon SM, Alshehri E, Moss BP, Ontaneda D, Willis MA (2019) Tuberculosis screening in multiple sclerosis: effect of disease-modifying therapies and lymphopenia on the prevalence of indeterminate TB screening results in the clinical setting. Mult Scler J Exp Transl Clin 5(3):2055217319875467
PubMed
Google Scholar
Bittner S, Engel S, Lange C, Weber MS, Haghikia A, Luessi F, Korn T, Klotz L, Bayas A, Paul F, Heesen C, Stangel M, Wildemann B, Bergh FT, Tackenberg B, Trebst C, Warnke C, Linker R, Kerschensteiner M, Zettl U, Tumani H, Bruck W, Meuth SG, Kumpfel T, Hemmer B, Wiendl H, Gold R, Zipp F (2019) Diagnostics and treatment of tuberculosis under immunotherapy for multiple sclerosis: current status and recommendations in Germany. Nervenarzt 90(12):1245–1253
PubMed
Google Scholar
Mailand MT, Frederiksen JL (2017) Vaccines and multiple sclerosis: a systematic review. J Neurol 264(6):1035–1050
CAS
PubMed
Google Scholar
Hapfelmeier A, Gasperi C, Donnachie E, Hemmer B (2019) A large case-control study on vaccination as risk factor for multiple sclerosis. Neurology 93(9):e908–e916
PubMed
Google Scholar
AAN. Practice guideline update: vaccine-preventable infections and immunization in multiple sclerosis. https://www.aan.com/Guidelines/Home/GetGuidelineContent/975. Accessed 28 Nov 2019
EMA. MabThera—product information. https://www.ema.europa.eu/en/documents/product-information/mabthera-epar-product-information_en.pdf. Accessed 29 Nov 2019
Loebermann M, Winkelmann A, Hartung HP, Hengel H, Reisinger EC, Zettl UK (2012) Vaccination against infection in patients with multiple sclerosis. Nat Rev Neurol 8:143–151
CAS
PubMed
Google Scholar
EMA. Updated recommendations to minimise the risk of the rare brain infection PML with Tecfidera. https://www.ema.europa.eu/en/news/updated-recommendations-minimise-risk-rare-brain-infection-pml-tecfidera. Accessed 28 Nov 2019
Ryerson LZ, Foley J, Chang I, Kister I, Cutter G, Metzger RR, Goldberg JD, Li X, Riddle E, Smirnakis K, Kasliwal R, Ren Z, Hotermans C, Ho PR, Campbell N (2019) Risk of natalizumab-associated PML in patients with MS is reduced with extended interval dosing. Neurology 93(15):e1452–e1462
CAS
PubMed
PubMed Central
Google Scholar
Mowry EM, Bourdette D (2019) Natalizumab wearing-off symptoms: patients with MS on extended interval dosing may not “mind the gap”. Neurology 93(17):735–736
PubMed
Google Scholar
Biogen. A study to evaluate efficacy, safety, and tolerability of 6-week extended interval dosing of natalizumab (BG00002) in participants with relapsing-remitting multiple sclerosis (RRMS) switching from treatment with 4-week natalizumab standard interval dosing (SID) in relation to continued SID treatment.https://clinicaltrials.gov/ct2/show/NCT03689972. Accessed 28 Nov 2019