Skip to main content

Advertisement

Log in

Cardiorespiratory fitness as a quantitative predictor of the risk of stroke: a dose–response meta-analysis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and purpose

Cardiorespiratory fitness (CRF) is closely related to our health, but whether high cardiorespiratory fitness could reduce stroke risk remains controversial. We used a meta-analysis to examine the overall association between cardiorespiratory fitness and stroke incidence.

Methods

A systematic search was performed in PubMed, EMBASE, and Web of science. We estimated the overall relative risk (RR) of stroke incidence for high levels of CRF individuals versus individuals with low levels of CRF. Meanwhile, we made a quantitative analysis of the association between CRF and the risk of stroke.

Results

14 cohort studies containing 1,409,340 participants were included in this meta-analysis, and 23,894 stroke patients were observed. The meta-analysis documented that the high-CRF individuals had a 42% lower risk of stroke (RR_0.58; 95% CI 0.51–0.66) compared with low-CRF individuals. Besides, subgroup analysis showed that the inverse association of CRF with the risk of stroke was consistent. There are 29% lower risk of ischemic stroke (RR_0.71; 95% CI 0.54–0.93) and 31% lower risk of hemorrhagic stroke (RR_0.69; 95% CI 0.47–1.00). Dose–response analysis showed that every “unit-dose” increment of five metabolic equivalents (METs) reduced a 15% lower risk of stroke (RR_0.85; 95% CI 0.79–0.91).

Conclusion

This meta-analysis provides the evidence that better CRF was with a lower risk of stroke incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, Kokkinos P (2015) Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis 57(4):306–314. https://doi.org/10.1016/j.pcad.2014.09.011

    Article  PubMed  Google Scholar 

  2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301(19):2024–2035. https://doi.org/10.1001/jama.2009.681

    Article  CAS  Google Scholar 

  3. Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, Creager MA, Eckel RH, Elkind MS, Fornage M, Goldstein LB, Greenberg SM, Horvath SE, Iadecola C, Jauch EC, Moore WS, Wilson JA, Stroke Council on C AHA, Stroke N, Council on Clinical C, Council on Functional G, Translational B, Council H (2014) Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45(12):3754–3832. https://doi.org/10.1161/STR.0000000000000046

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haskell WL, Leon AS, Caspersen CJ, Froelicher VF, Hagberg JM, Harlan W, Holloszy JO, Regensteiner JG, Thompson PD, Washburn RA et al (1992) Cardiovascular benefits and assessment of physical activity and physical fitness in adults. Med Sci Sports Exerc 24(6 Suppl):S201–220

    CAS  PubMed  Google Scholar 

  5. Hussain N, Gersh BJ, Carta KG, Sydo N, Lopez-Jimenez F, Kopecky SL, Thomas RJ, Asirvatham SJ, Allison TG (2018) Impact of cardiorespiratory fitness on frequency of atrial fibrillation, stroke, and all-cause mortality. Am J Cardiol 121(1):41–49

    Article  Google Scholar 

  6. Wessel TR, Arant CB, Olson MB, Johnson BD, Reis SE, Sharaf BL, Shaw LJ, Handberg E, Sopko G, Kelsey SF, Pepine CJ, Merz NB (2004) Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA 292(10):1179–1187. https://doi.org/10.1001/jama.292.10.1179

    Article  CAS  PubMed  Google Scholar 

  7. Aberg ND, Kuhn HG, Nyberg J, Waern M, Friberg P, Svensson J, Toren K, Rosengren A, Aberg MA, Nilsson M (2015) Influence of cardiovascular fitness and muscle strength in early adulthood on long-term risk of stroke in Swedish men. Stroke 46(7):1769–1776. https://doi.org/10.1161/STROKEAHA.115.009008

    Article  PubMed  Google Scholar 

  8. Kurl S, Laukkanen JA, Niskanen L, Rauramaa R, Tuomainen TP, Sivenius J, Salonen JT (2005) Cardiac power during exercise and the risk of stroke in men. Stroke 36(4):820–824. https://doi.org/10.1161/01.STR.0000157592.82198.28

    Article  CAS  PubMed  Google Scholar 

  9. Sui X, Howard VJ, McDonnell MN, Ernstsen L, Flaherty ML, Hooker SP, Lavie CJ (2018) Racial differences in the association between nonexercise estimated cardiorespiratory fitness and incident stroke. Mayo Clin Proc 93(7):884–894

    Article  Google Scholar 

  10. Hooker SP, Sui X, Colabianchi N, Vena J, Laditka J, LaMonte MJ, Blair SN (2008) Cardiorespiratory fitness as a predictor of fatal and nonfatal stroke in asymptomatic women and men. Stroke 39(11):2950–2957

    Article  Google Scholar 

  11. Lee IM, Hennekens CH, Berger K, Buring JE, Manson JE (1999) Exercise and risk of stroke in male physicians. Stroke 30(1):1–6

    Article  CAS  Google Scholar 

  12. Habibzadeh MR, Farzaneh-Far R, Sarna P, Na B, Schiller NB, Whooley MA (2010) Association of blood pressure and heart rate response during exercise with cardiovascular events in the Heart and Soul Study. J Hypertens 28(11):2236–2242. https://doi.org/10.1097/HJH.0b013e32833d455b

    Article  CAS  PubMed  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  Google Scholar 

  14. Pierre-Louis B, Guddati AK, Syed MKH, Gorospe VE, Manguerra M, Bagchi C, Aronow WS, Ahn C (2014) Exercise capacity as an independent risk factor for adverse cardiovascular outcomes among nondiabetic and diabetic patients. Arch Med Sci 10(1):25–32. https://doi.org/10.5114/aoms.2014.40731

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patton JF, Vogel JA, Mello RP (1982) Evaluation of a maximal predictive cycle ergometer test of aerobic power. Eur J Appl Physiol 49(1):131–140. https://doi.org/10.1007/bf00428971

    Article  CAS  Google Scholar 

  16. Jackson AS, Sui X, O'Connor DP, Church TS, Lee DC, Artero EG, Blair SN (2012) Longitudinal cardiorespiratory fitness algorithms for clinical settings. Am J Prev Med 43(5):512–519. https://doi.org/10.1016/j.amepre.2012.06.032

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kohl HW, Blair SN, Paffenbarger RS Jr, Macera CA, Kronenfeld JJ (1988) A mail survey of physical activity habits as related to measured physical fitness. Am J Epidemiol 127(6):1228–1239

    Article  CAS  Google Scholar 

  18. Hlatky MA, Boineau RE, Higginbotham MB, Lee KL, Mark DB, Califf RM, Cobb FR, Pryor DB (1989) A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index). Am J Cardiol 64(10):651–654

    Article  CAS  Google Scholar 

  19. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73. https://doi.org/10.1093/aje/kwr265

    Article  PubMed  Google Scholar 

  20. Kokkinos P (2014) Cardiorespiratory fitness, exercise, and blood pressure. Hypertension 64(6):1160–1164. https://doi.org/10.1161/HYPERTENSIONAHA.114.03616

    Article  CAS  PubMed  Google Scholar 

  21. Zaccardi F, O'Donovan G, Webb DR, Yates T, Kurl S, Khunti K, Davies MJ, Laukkanen JA (2015) Cardiorespiratory fitness and risk of type 2 diabetes mellitus: a 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis 243(1):131–137. https://doi.org/10.1016/j.atherosclerosis.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  22. Fernstrom M, Fernberg U, Eliason G, Hurtig-Wennlof A (2017) Aerobic fitness is associated with low cardiovascular disease risk: the impact of lifestyle on early risk factors for atherosclerosis in young healthy Swedish individuals—the Lifestyle, Biomarker, and Atherosclerosis study. Vasc Health Risk Manag 13:91–99. https://doi.org/10.2147/VHRM.S125966

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parto P, Lavie CJ, Swift D, Sui X (2015) The role of cardiorespiratory fitness on plasma lipid levels. Expert Rev Cardiovasc Ther 13(11):1177–1183. https://doi.org/10.1586/14779072.2015.1092384

    Article  CAS  PubMed  Google Scholar 

  24. Bose A, O'Neal WT, Bennett A, Judd SE, Qureshi WT, Sui X, Howard VJ, Howard G, Soliman EZ (2017) Relation between estimated cardiorespiratory fitness and atrial fibrillation (from the reasons for geographic and racial differences in stroke study). Am J Cardiol 119(11):1776–1780. https://doi.org/10.1016/j.amjcard.2017.03.008

    Article  PubMed  Google Scholar 

  25. Boots EA, Schultz SA, Oh JM, Larson J, Edwards D, Cook D, Koscik RL, Dowling MN, Gallagher CL, Carlsson CM, Rowley HA, Bendlin BB, LaRue A, Asthana S, Hermann BP, Sager MA, Johnson SC, Okonkwo OC (2015) Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer's disease. Brain Imaging Behav 9(3):639–649. https://doi.org/10.1007/s11682-014-9325-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hankey GJ (2017) Stroke. Lancet 389(10069):641–654. https://doi.org/10.1016/s0140-6736(16)30962-x

    Article  PubMed  Google Scholar 

  27. Madssen E, Skaug EA, Wisloff U, Ellingsen O, Videm V (2019) Inflammation is strongly associated with cardiorespiratory fitness, sex, BMI, and the metabolic syndrome in a self-reported healthy population: HUNT3 fitness study. Mayo Clin Proc. https://doi.org/10.1016/j.mayocp.2018.08.040

    Article  PubMed  Google Scholar 

  28. Tibaut M, Caprnda M, Kubatka P, Sinkovic A, Valentova V, Filipova S, Gazdikova K, Gaspar L, Mozos I, Egom EE, Rodrigo L, Kruzliak P, Petrovic D (2019) Markers of atherosclerosis: part 1—serological markers. Heart Lung Circ 28(5):667–677. https://doi.org/10.1016/j.hlc.2018.06.1057

    Article  PubMed  Google Scholar 

  29. Moriya J (2019) Critical roles of inflammation in atherosclerosis. J Cardiol 73(1):22–27. https://doi.org/10.1016/j.jjcc.2018.05.010

    Article  PubMed  Google Scholar 

  30. Eliakim A, Nemet D (2010) Exercise training, physical fitness and the growth hormone-insulin-like growth factor-1 axis and cytokine balance. Med Sport Sci 55:128–140. https://doi.org/10.1159/000321977

    Article  CAS  PubMed  Google Scholar 

  31. Traustadottir T, Davies SS, Su Y, Choi L, Brown-Borg HM, Roberts LJ 2nd, Harman SM (2012) Oxidative stress in older adults: effects of physical fitness. Age 34(4):969–982. https://doi.org/10.1007/s11357-011-9277-6

    Article  CAS  PubMed  Google Scholar 

  32. Lee S, Bacha F, Gungor N, Arslanian SA (2006) Cardiorespiratory fitness in youth: relationship to insulin sensitivity and beta-cell function. Obesity 14(9):1579–1585. https://doi.org/10.1038/oby.2006.182

    Article  CAS  PubMed  Google Scholar 

  33. Lee CD, Folsom AR, Blair SN (2003) Physical activity and stroke risk: a meta-analysis. Stroke 34(10):2475–2481. https://doi.org/10.1161/01.STR.0000091843.02517.9D

    Article  PubMed  Google Scholar 

  34. de Carvalho Souza Vieira M, Boing L, Leitao AE, Vieira G, Coutinho de Azevedo Guimaraes A (2018) Effect of physical exercise on the cardiorespiratory fitness of men—a systematic review and meta-analysis. Maturitas 115:23–30. https://doi.org/10.1016/j.maturitas.2018.06.006

    Article  PubMed  Google Scholar 

  35. Skinner JS, Jaskolski A, Jaskolska A, Krasnoff J, Gagnon J, Leon AS, Rao DC, Wilmore JH, Bouchard C, Study HF (2001) Age, sex, race, initial fitness, and response to training: the HERITAGE family study. J Appl Physiol 90(5):1770–1776. https://doi.org/10.1152/jappl.2001.90.5.1770

    Article  CAS  PubMed  Google Scholar 

  36. Jimenez MC, Manson JE, Cook NR, Kawachi I, Wassertheil-Smoller S, Haring B, Nassir R, Rhee JJ, Sealy-Jefferson S, Rexrode KM (2019) Racial variation in stroke risk among women by stroke risk factors. Stroke 50(4):797–804. https://doi.org/10.1161/STROKEAHA.117.017759

    Article  PubMed  Google Scholar 

  37. Howard VJ (2013) Reasons underlying racial differences in stroke incidence and mortality. Stroke 44(6 Suppl 1):S126–128. https://doi.org/10.1161/STROKEAHA.111.000691

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pandey A, Park BD, Ayers C, Das SR, Lakoski S, Matulevicius S, de Lemos JA, Berry JD (2016) Determinants of racial/ethnic differences in cardiorespiratory fitness (from the Dallas Heart Study). Am J Cardiol 118(4):499–503. https://doi.org/10.1016/j.amjcard.2016.05.043

    Article  PubMed  Google Scholar 

  39. Siconolfi SF, Lasater TM, Snow RC, Carleton RA (1985) Self-reported physical activity compared with maximal oxygen uptake. Am J Epidemiol 122(1):101–105

    Article  CAS  Google Scholar 

  40. Duscha BD, Slentz CA, Johnson JL, Houmard JA, Bensimhon DR, Knetzger KJ, Kraus WE (2005) Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest 128(4):2788–2793. https://doi.org/10.1378/chest.128.4.2788

    Article  PubMed  Google Scholar 

  41. Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Johnson WD, Blair SN, Church TS, Newton RL Jr (1985) (2013) Racial differences in the response of cardiorespiratory fitness to aerobic exercise training in Caucasian and African American postmenopausal women. J Appl Physiol 114(10):1375–1382. https://doi.org/10.1152/japplphysiol.01077.2012

    Article  CAS  Google Scholar 

  42. Sieverdes JC, Sui X, Lee D-c, Lee IM, Hooker SP, Blair SN (2011) Independent and joint associations of physical activity and fitness on stroke in men. Phys Sports Med 39(2):119–126

    Article  Google Scholar 

  43. Talbot LA, Morrell CH, Metter EJ, Fleg JL (2002) Comparison of cardiorespiratory fitness versus leisure time physical activity as predictors of coronary events in men aged %3c or = 65 years and %3e 65 years. Am J Cardiol 89(10):1187–1192

    Article  Google Scholar 

  44. Kim ES, Ishwaran H, Blackstone E, Lauer MS (2007) External prognostic validations and comparisons of age- and gender-adjusted exercise capacity predictions. J Am Coll Cardiol 50(19):1867–1875. https://doi.org/10.1016/j.jacc.2007.08.003

    Article  PubMed  Google Scholar 

  45. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ, Myers J, Niebauer J, Sallis R, Sawada SS, Sui X, Wisloff U, American Heart Association Physical Activity Committee of the Council on L, Cardiometabolic H, Council on Clinical C, Council on E, Prevention, Council on C, Stroke N, Council on Functional G, Translational B, Stroke C (2016) Importance of Assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American heart association. Circulation 134(24):e653–e699. https://doi.org/10.1161/CIR.0000000000000461

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from National Scientific Foundation of China NSFC81771961.

Author information

Authors and Affiliations

Authors

Contributions

YYW: conceptualized the study; ZYX, YYW and FL: design of study; YYW, FL and LGG: literature retrieval, study selection, data extraction, statistical analyses, interpretation of the data and drafting of the initial manuscript; YC: quality evaluation; ZYX: critical revision and comment for important intellectual content; all authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Zongyi Xie.

Ethics declarations

Conflicts of interest

All authors report no disclosures relevant to the manuscript.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors. As a systematic review and meta-analysis, no ethical approval or consent to participate was required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, F., Cheng, Y. et al. Cardiorespiratory fitness as a quantitative predictor of the risk of stroke: a dose–response meta-analysis. J Neurol 267, 491–501 (2020). https://doi.org/10.1007/s00415-019-09612-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09612-6

Keywords

Navigation