Skip to main content

Advertisement

Log in

Role of complement and potential of complement inhibitors in myasthenia gravis and neuromyelitis optica spectrum disorders: a brief review

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

A Correction to this article was published on 15 November 2021

A Correction to this article was published on 17 October 2019

This article has been updated

Abstract

The complement system is a powerful member of the innate immune system. It is highly adept at protecting against pathogens, but exists in a delicate balance between its protective functions and overactivity, which can result in autoimmune disease. A cascade of complement proteins that requires sequential activation, and numerous complement regulators, exists to regulate a proportionate response to pathogens. In spite of these mechanisms there is significant evidence for involvement of the complement system in driving the pathogenesis of variety of diseases including neuromyelitis optica spectrum disorders (NMOSD) and myasthenia gravis (MG). As an amplification cascade, there are an abundance of molecular targets that could be utilized for therapeutic intervention. Clinical trials assessing complement pathway inhibition in both these conditions have recently been completed and include the first randomized placebo-controlled trial in NMOSD showing positive results. This review aims to review and update the reader on the complement system and the evolution of complement-based therapeutics in these two disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from [7]

Fig. 3
Fig. 4
Fig. 5

Modified from [124]

Fig. 6

Modified from [127, 128]

Similar content being viewed by others

Change history

References

  1. Brekke OH, Michaelsen TE, Aase A et al (1994) Human IgG isotype-specific amino acid residues affecting complement-mediated cell lysis and phagocytosis. Eur J Immunol 24:2542–2547. https://doi.org/10.1002/eji.1830241042

    Article  CAS  PubMed  Google Scholar 

  2. Petersen JG, Dorrington KJ (1974) An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G. J Biol Chem 249:5633–5641

    CAS  PubMed  Google Scholar 

  3. van der Zee JS, van Swieten P, Aalberse RC (1986) Serologic aspects of IgG4 antibodies. II. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency. J Immunol 137:3566–3571

    PubMed  Google Scholar 

  4. Angal S, King DJ, Bodmer MW et al (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108

    CAS  PubMed  Google Scholar 

  5. Schuurman J, Perdok GJ, Gorter AD, Aalberse RC (2001) The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol 38:1–8

    CAS  PubMed  Google Scholar 

  6. van der Neut Kolfschoten M, Schuurman J, Losen M et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557. https://doi.org/10.1126/science.1144603

    Article  CAS  Google Scholar 

  7. Morgan BP, Harris CL (2015) Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov 14:857–877. https://doi.org/10.1038/nrd4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brodsky RA (2014) Paroxysmal nocturnal hemoglobinuria. Blood 124:2804–2811. https://doi.org/10.1182/blood-2014-02-522128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodfellow RM, Williams AS, Levin JL et al (2000) Soluble complement receptor one (sCR9) inhibits the development and progression of rat collagen-induced arthritis. Clin Exp Immunol 119:210–216. https://doi.org/10.1046/J.1365-2249.2000.01129.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oberholzer J, Yu D, Triponez F et al (1999) Decomplementation with cobra venom factor prolongs survival of xenografted islets in a rat to mouse model. Immunology 97:173–180. https://doi.org/10.1046/J.1365-2567.1999.00742.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rother RP, Rollins SA, Mojcik CF et al (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264. https://doi.org/10.1038/nbt1344

    Article  CAS  PubMed  Google Scholar 

  12. Pittock SJ, Lennon VA, McKeon A et al (2013) Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. https://doi.org/10.1016/S1474-4422(13)70076-0

    Article  PubMed  Google Scholar 

  13. Howard JF, Barohn RJ, Cutter GR et al (2013) A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve 48:76–84. https://doi.org/10.1002/mus.23839

    Article  CAS  PubMed  Google Scholar 

  14. Stegall MD, Diwan T, Raghavaiah S et al (2011) Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant 11:2405–2413. https://doi.org/10.1111/j.1600-6143.2011.03757.x

    Article  CAS  PubMed  Google Scholar 

  15. Levy M, Mealy MA (2014) Purified human C1-esterase inhibitor is safe in acute relapses of neuromyelitis optica. Neurol Neuroimmunol NeuroInflammation 1:1–5. https://doi.org/10.1212/NXI.0000000000000005

    Article  Google Scholar 

  16. Kalbitz M, Fattahi F, Herron TJ et al (2016) Complement destabilizes cardiomyocyte function in vivo after polymicrobial sepsis and in vitro. J Immunol 197:2353–2361. https://doi.org/10.4049/jimmunol.1600091

    Article  CAS  PubMed  Google Scholar 

  17. Grumach AS, Kirschfink M (2014) Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol 61:110–117

    CAS  PubMed  Google Scholar 

  18. Westra D, Kurvers RAJ, Van den Heuvel LP et al (2014) Compound heterozygous mutations in the C6 gene of a child with recurrent infections. Mol Immunol. https://doi.org/10.1016/j.molimm.2013.11.023

    Article  PubMed  Google Scholar 

  19. Orren A, Owen EP, Henderson HE et al (2012) Complete deficiency of the sixth complement component (C6Q0), susceptibility to Neisseria meningitidis infections and analysis of the frequencies of C6Q0 gene defects in South Africans. Clin Exp Immunol. https://doi.org/10.1111/j.1365-2249.2011.04525.x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yih Chen J, Ling WuY, Yin Mok M et al (2016) Effects of complement C4 gene copy number variations, size dichotomy, and C4A deficiency on genetic risk and clinical presentation of systemic lupus erythematosus in East Asian populations. Arthritis Rheumatol 68:1442–1453. https://doi.org/10.1002/art.39589

    Article  CAS  Google Scholar 

  21. Fleming SD, Shea-Donohue T, Guthridge JM et al (2002) Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire. J Immunol 169:2126–2133

    CAS  PubMed  Google Scholar 

  22. Dunkelberger JR, Song W-C (2009) Complement in host immunity 34 complement and its role in innate and adaptive immune responses. Cell Res 20:34–5034. https://doi.org/10.1038/cr.2009.139

    Article  CAS  PubMed  Google Scholar 

  23. Baudino L, Sardini A, Ruseva MM et al (2014) C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T-cell responses to cargo-derived antigens. Proc Natl Acad Sci 111:1503–1508. https://doi.org/10.1073/pnas.1316877111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagner C, Ochmann C, Schoels M et al (2006) The complement receptor 1, CR1 (CD35), mediates inhibitory signals in human T-lymphocytes. Mol Immunol. https://doi.org/10.1016/j.molimm.2005.04.006

    Article  PubMed  Google Scholar 

  25. Lennon VA, Wingerchuk DM, Kryzer TJ et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet (London, England) 364:2106–2112. https://doi.org/10.1016/S0140-6736(04)17551-X

    Article  CAS  Google Scholar 

  26. Lennon VA, Kryzer TJ, Pittock SJ et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477. https://doi.org/10.1084/jem.20050304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189. https://doi.org/10.1212/WNL.0000000000001729

    Article  PubMed  PubMed Central  Google Scholar 

  28. Misu T, Fujihara K, Nakashima I et al (2005) Intractable hiccup and nausea with periaqueductal lesions in neuromyelitis optica. Neurology 65:1479–1482. https://doi.org/10.1212/01.wnl.0000183151.19351.82

    Article  CAS  PubMed  Google Scholar 

  29. Apiwattanakul M, Popescu BF, Matiello M et al (2010) Intractable vomiting as the initial presentation of neuromyelitis optica. Ann Neurol 68:757–761. https://doi.org/10.1002/ana.22121

    Article  PubMed  Google Scholar 

  30. Poppe AY, Lapierre Y, Melançon D et al (2005) Neuromyelitis optica with hypothalamic involvement. Mult Scler 11:617–621. https://doi.org/10.1191/1352458505ms1200cr

    Article  PubMed  Google Scholar 

  31. Pu S, Long Y, Yang N et al (2015) Syndrome of inappropriate antidiuretic hormone secretion in patients with aquaporin-4 antibody. J Neurol 262:101–107. https://doi.org/10.1007/s00415-014-7537-y

    Article  CAS  PubMed  Google Scholar 

  32. Baba T, Nakashima I, Kanbayashi T et al (2009) Narcolepsy as an initial manifestation of neuromyelitis optica with anti-aquaporin-4 antibody. J Neurol 256:287–288. https://doi.org/10.1007/s00415-009-0139-4

    Article  PubMed  Google Scholar 

  33. Wingerchuk DM, Hogancamp WF, O’Brien PC, Weinshenker BG (1999) The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53:1107–1114

    CAS  PubMed  Google Scholar 

  34. Lucchinetti CF, Guo Y, Popescu BFG et al (2014) The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 24:83–97. https://doi.org/10.1111/bpa.12099

    Article  CAS  PubMed  Google Scholar 

  35. Pittock SJ, Lucchinetti CF (2016) Neuromyelitis optica and the evolving spectrum of autoimmune aquaporin-4 channelopathies: a decade later. Ann N Y Acad Sci 1366:20–39. https://doi.org/10.1111/nyas.12794

    Article  PubMed  Google Scholar 

  36. Hinson SR, Romero MF, Popescu BFG et al (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci USA 109:1245–1250. https://doi.org/10.1073/pnas.1109980108

    Article  PubMed  Google Scholar 

  37. Kitley J, Woodhall M, Leite MI et al (2015) Aquaporin-4 antibody isoform binding specificities do not explain clinical variations in NMO. Neurol Neuroimmunol neuroinflammation 2:e121. https://doi.org/10.1212/NXI.0000000000000121

    Article  Google Scholar 

  38. Mortensen SA, Sander B, Jensen RK et al (2017) Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc Natl Acad Sci 114:986–991. https://doi.org/10.1073/pnas.1616998114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lehmann-Horn K, Schleich E, Hertzenberg D et al (2011) Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J Neuroinflammation 8:146. https://doi.org/10.1186/1742-2094-8-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mader S, Gredler V, Schanda K et al (2011) Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 8:184. https://doi.org/10.1186/1742-2094-8-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zamvil SS, Slavin AJ (2015) Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol neuroinflammation 2:e62. https://doi.org/10.1212/NXI.0000000000000062

    Article  Google Scholar 

  42. Hinson SR, McKeon A, Fryer JP et al (2009) Prediction of neuromyelitis optica attack severity by quantitation of complement-mediated injury to aquaporin-4—expressing cells. Arch Neurol 66:1164–1167. https://doi.org/10.1001/archneurol.2009.188

    Article  PubMed  Google Scholar 

  43. Phuan PW, Ratelade J, Rossi A et al (2012) Complement-dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein assembly in orthogonal arrays. J Biol Chem. https://doi.org/10.1074/jbc.M112.344325

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nishiyama S, Misu T, Nuriya M et al (2016) Complement-dependent and -independent aquaporin 4-antibody-mediated cytotoxicity in human astrocytes: pathogenetic implications in neuromyelitis optica. Biochem Biophys Reports 7:45–51. https://doi.org/10.1016/j.bbrep.2016.05.012

    Article  CAS  Google Scholar 

  45. Ingram G, Loveless S, Howell OW et al (2014) Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun 2:53. https://doi.org/10.1186/2051-5960-2-53

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lucchinetti CF, Mandler RN, Mcgavern D et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    PubMed  Google Scholar 

  47. Hakobyan S, Luppe S, Evans DR et al (2016) Plasma complement biomarkers distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler J. https://doi.org/10.1177/1352458516669002

    Article  Google Scholar 

  48. Lumsden CE (1971) The immunogenesis of the multiple sclerosis plaque. Brain Res 28:365–390

    CAS  PubMed  Google Scholar 

  49. Compston DAS, Morgan BP, Campbell AK et al (1989) Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol Appl Neurobiol 15:307–316. https://doi.org/10.1111/j.1365-2990.1989.tb01231.x

    Article  CAS  PubMed  Google Scholar 

  50. Kuroda H, Fujihara K, Takano R et al (2013) Increase of complement fragment C5a in cerebrospinal fluid during exacerbation of neuromyelitis optica. J Neuroimmunol 254:178–182. https://doi.org/10.1016/j.jneuroim.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  51. Nytrova P, Potlukova E, Kemlink D et al (2014) Complement activation in patients with neuromyelitis optica. J Neuroimmunol 274:185–191. https://doi.org/10.1016/j.jneuroim.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  52. Sádaba MC, Tzartos J, Paíno C et al (2012) Axonal and oligodendrocyte-localized IgM and IgG deposits in MS lesions. J Neuroimmunol 247:86–94. https://doi.org/10.1016/j.jneuroim.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  53. Waters P, Jarius S, Littleton E et al (2008) Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis. Arch Neurol 65:913–919. https://doi.org/10.1001/archneur.65.7.913

    Article  PubMed  Google Scholar 

  54. Brink BP, Veerhuis R, Breij ECW et al (2005) The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J Neuropathol Exp Neurol 64:147–155

    CAS  PubMed  Google Scholar 

  55. Vamvakas EC, Pineda AA, Weinshenker BG (1995) Meta-analysis of clinical studies of the efficacy of plasma exchange in the treatment of chronic progressive multiple sclerosis. J Clin Apher 10:163–170

    CAS  PubMed  Google Scholar 

  56. Linington C, Morgan BP, Scolding NJ et al (1989) The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 112:895–911

    PubMed  Google Scholar 

  57. Vriesendorp FJ, Flynn RE, Pappolla MA, Koski CL (1997) Soluble complement receptor 1 (sCR59) is not as effective as cobra venom factor in the treatment of experimental allergic neuritis. Int J Neurosci 92:287–298

    CAS  PubMed  Google Scholar 

  58. Mead RJ, Singhrao SK, Neal JW et al (2002) The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 168:458–465. https://doi.org/10.4049/JIMMUNOL.168.1.458

    Article  CAS  PubMed  Google Scholar 

  59. Weerth SH, Rus H, Shin ML, Raine CS (2003) Complement C5 in experimental autoimmune encephalomyelitis (EAE) facilitates remyelination and prevents gliosis. Am J Pathol 163:1069–1080. https://doi.org/10.1016/S0002-9440(10)63466-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bradl M, Misu T, Takahashi T et al (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66:630–643. https://doi.org/10.1002/ana.21837

    Article  CAS  PubMed  Google Scholar 

  61. Saadoun S, Waters P, Bell BA et al (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133:349–361. https://doi.org/10.1093/brain/awp309

    Article  PubMed  PubMed Central  Google Scholar 

  62. Doi H, Matsushita T, Isobe N et al (2009) Hypercomplementemia at relapse in patients with anti-aquaporin-4 antibody. Mult Scler 15:304–310. https://doi.org/10.1177/1352458508099139

    Article  CAS  PubMed  Google Scholar 

  63. Hinson SR, McKeon A, Lennon VA (2010) Neurological autoimmunity targeting aquaporin-4. Neuroscience 168:1009–1018

    CAS  PubMed  Google Scholar 

  64. De Carvalho Jennings Pereira WL, Reiche EMV, Kallaur AP, Kaimen-Maciel DR (2015) Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: a review. J Neurol Sci 355:7–17

    Google Scholar 

  65. Hinson SR, Roemer SF, Lucchinetti CF et al (2008) Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 205:2473–2481. https://doi.org/10.1084/jem.20081241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ratelade J, Bennett JL, Verkman AS (2011) Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J Biol Chem 286:45156–45164. https://doi.org/10.1074/jbc.M111.297275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hinson SR, Clift IC, Luo N et al (2017) Autoantibody-induced internalization of CNS AQP4 water channel and EAAT2 glutamate transporter requires astrocytic Fc receptor. Proc Natl Acad Sci 114:5491–5496. https://doi.org/10.1073/pnas.1701960114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stanley KK, Herz J (1987) Topological mapping of complement component C9 by recombinant DNA techniques suggests a novel mechanism for its insertion into target membranes. EMBO J 6:1951–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Whittam D, Wilson M, Hamid S et al (2017) What’s new in neuromyelitis optica? A short review for the clinical neurologist. J Neurol 264:2330–2344. https://doi.org/10.1007/s00415-017-8445-8

    Article  PubMed  Google Scholar 

  70. Hamid SHM, Whittam D, Mutch K et al (2017) What proportion of AQP4-IgG-negative NMO spectrum disorder patients are MOG-IgG positive? A cross sectional study of 132 patients. J Neurol 264:2088–2094. https://doi.org/10.1007/s00415-017-8596-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jurynczyk M, Messina S, Woodhall MR et al (2017) Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 140:3128–3138. https://doi.org/10.1093/brain/awx276

    Article  PubMed  Google Scholar 

  72. Bettelli E, Baeten D, Jäger A et al (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116:2393–2402. https://doi.org/10.1172/JCI28334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392. https://doi.org/10.1172/JCI28330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saadoun S, Waters P, Owens GP et al (2014) Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol Commun 2:35. https://doi.org/10.1186/2051-5960-2-35

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jarius S, Wildemann B (2013) Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol 23:661–683. https://doi.org/10.1111/bpa.12084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    CAS  PubMed  Google Scholar 

  77. Frigeri A, Gropper MA, Umenishi F et al (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108(Pt 9):2993–3002

    CAS  PubMed  Google Scholar 

  78. Folkesson HG, Matthay MA, Frigeri A, Verkman AS (1996) Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J Clin Invest 97:664–671. https://doi.org/10.1172/JCI118463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sabolić I, Herak-Kramberger CM, Breton S, Brown D (1999) Na/K-ATPase in intercalated cells along the rat nephron revealed by antigen retrieval. J Am Soc Nephrol 10:913–922

    PubMed  Google Scholar 

  80. Minami Y, Shimada S, Miyahara H et al (1998) Selective expression of mercurial-insensitive water channel (AQP-4) gene in Hensen and Claudius cells in the rat cochlea. Acta Otolaryngol Suppl 533:19–21

    CAS  PubMed  Google Scholar 

  81. Li J, Patil RV, Verkman AS (2002) Mildly abnormal retinal function in transgenic mice without Müller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 43:573–579

    PubMed  Google Scholar 

  82. Jäger K, Reh D, Gebhardt M et al (2010) Expression profile of aquaporins in human nasolacrimal duct epithelium. Curr Eye Res 35:267–273. https://doi.org/10.3109/02713680903572525

    Article  CAS  PubMed  Google Scholar 

  83. Saadoun S, Papadopoulos MC (2015) Role of membrane complement regulators in neuromyelitis optica. Mult Scler 21:1644–1654. https://doi.org/10.1177/1352458515571446

    Article  CAS  PubMed  Google Scholar 

  84. Kitley J, Leite MI, Nakashima I et al (2012) Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 135:1834–1849. https://doi.org/10.1093/brain/aws109

    Article  PubMed  Google Scholar 

  85. Kitley J, Palace J (2016) Therapeutic options in neuromyelitis optica spectrum disorders. Expert Rev Neurother. https://doi.org/10.1586/14737175.2016.1150178

    Article  PubMed  Google Scholar 

  86. Elsone L, Kitley J, Luppe S et al (2014) Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Mult Scler 20:1533–1540. https://doi.org/10.1177/1352458514525870

    Article  CAS  PubMed  Google Scholar 

  87. Montcuquet A, Collongues N, Papeix C et al (2017) Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult Scler 23:1377–1384. https://doi.org/10.1177/1352458516678474

    Article  CAS  PubMed  Google Scholar 

  88. Gao F, Chai B, Gu C et al (2019) Effectiveness of rituximab in neuromyelitis optica: a meta-analysis. BMC Neurol 19:36. https://doi.org/10.1186/s12883-019-1261-2

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mealy MA, Wingerchuk DM, Palace J et al (2014) Comparison of relapse and treatment failure rates among patients with neuromyelitis optica. JAMA Neurol 71:324. https://doi.org/10.1001/jamaneurol.2013.5699

    Article  PubMed  Google Scholar 

  90. Gold R, Stangel M, Dalakas MC (2007) Drug Insight: the use of intravenous immunoglobulin in neurology—therapeutic considerations and practical issues. Nat Clin Pract Neurol 3:36–44. https://doi.org/10.1038/ncpneuro0376

    Article  CAS  PubMed  Google Scholar 

  91. Lutz HU, Stammler P, Bianchi V et al (2004) Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level. Blood 103:465–472. https://doi.org/10.1182/blood-2003-05

    Article  CAS  PubMed  Google Scholar 

  92. Basta M, Van Goor F, Luccioli S et al (2003) F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 9:431–438. https://doi.org/10.1038/nm836

    Article  CAS  PubMed  Google Scholar 

  93. Viswanathan S, Wong AHY, Quek AML, Yuki N (2015) Intravenous immunoglobulin may reduce relapse frequency in neuromyelitis optica. J Neuroimmunol 282:92–96. https://doi.org/10.1016/j.jneuroim.2015.03.021

    Article  CAS  PubMed  Google Scholar 

  94. Magraner MJ, Coret F, Casanova B (2013) Estudio del efecto del tratamiento con inmunoglobulinas por vía intravenosa en la neuromielitis óptica. Neurología 28:65–72. https://doi.org/10.1016/j.nrl.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  95. Bichuetti DB, Oliveira EML (2013) Comment on neuromyelitis optica: potential roles for intravenous immunoglobulin. J Clin Immunol 33:307. https://doi.org/10.1007/s10875-012-9808-7

    Article  PubMed  Google Scholar 

  96. Elsone L, Panicker J, Mutch K et al (2014) Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult Scler J 20:501–504. https://doi.org/10.1177/1352458513495938

    Article  CAS  Google Scholar 

  97. Osman C, Jennings R, El-Ghariani K, Pinto A (2019) Plasma exchange in neurological disease. Pract Neurol Practneurol. https://doi.org/10.1136/practneurol-2019-002336

    Article  Google Scholar 

  98. Bonnan M, Cabre P (2012) Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int 2012:1–9. https://doi.org/10.1155/2012/787630

    Article  CAS  Google Scholar 

  99. Bonnan M, Valentino R, Debeugny S et al (2018) Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry 89:346–351. https://doi.org/10.1136/jnnp-2017-316286

    Article  PubMed  Google Scholar 

  100. Kleiter I, Gahlen A, Borisow N et al (2016) Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol 79:206–216. https://doi.org/10.1002/ana.24554

    Article  CAS  PubMed  Google Scholar 

  101. Hillmen P, Young NS, Schubert J et al (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 355:1233–1243. https://doi.org/10.1056/NEJMoa061648

    Article  CAS  PubMed  Google Scholar 

  102. Zuber J, Fakhouri F, Roumenina LT et al (2012) Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 8:643–657. https://doi.org/10.1038/nrneph.2012.214

    Article  CAS  PubMed  Google Scholar 

  103. Kaplan M (2002) Eculizumab (Alexion). Curr Opin Investig Drugs 3:1017–1023

    CAS  PubMed  Google Scholar 

  104. Alexion (2018) Alexion Announces Successful Phase 3 PREVENT Study of Soliris® (Eculizumab) in Patients with Neuromyelitis Optica Spectrum Disorder (NMOSD)| Alexion Pharmaceuticals, Inc. In: Press Release. https://news.alexionpharma.com/press-release/product-news/alexion-announces-successful-phase-3-prevent-study-soliris-eculizumab-pat. Accessed 14 Mar 2019

  105. Pittock SJ, Berthele A, Fujihara K et al (2019) Eculizumab in aquaporin-4—positive neuromyelitis optica spectrum disorder. N Engl J Med. https://doi.org/10.1056/NEJMoa1900866

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tradtrantip L, Duan T, Yeaman MR, Verkman AS (2019) CD55 upregulation in astrocytes by statins as potential therapy for AQP4-IgG seropositive neuromyelitis optica. J Neuroinflammation 16:57. https://doi.org/10.1186/s12974-019-1448-x

    Article  PubMed  PubMed Central  Google Scholar 

  107. Vincent A, Palace J, Hilton-Jones D (2001) Myasthenia gravis. Lancet 357:2122–2128. https://doi.org/10.1016/S0140-6736(00)05186-2

    Article  CAS  PubMed  Google Scholar 

  108. Conti-Fine BM, Milani M, Kaminski HJ (2006) Myasthenia gravis: past, present, and future. J Clin Invest 116:2843–2854. https://doi.org/10.1172/JCI29894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kusner LL, Losen M, Vincent A et al (2015) Guidelines for pre-clinical assessment of the acetylcholine receptor-specific passive transfer myasthenia gravis model-recommendations for methods and experimental designs. Exp Neurol. https://doi.org/10.1016/j.expneurol.2015.02.025

    Article  PubMed  PubMed Central  Google Scholar 

  110. Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180:871–872

    CAS  PubMed  Google Scholar 

  111. Toyka KV, Drachman DB, Griffin DE et al (1977) Myasthenia Gravis. N Engl J Med 296:125–131. https://doi.org/10.1056/NEJM197701202960301

    Article  CAS  PubMed  Google Scholar 

  112. Newsom-Davis J, Pinching AJ, Vincent A, Wilson SG (1978) Function of circulating antibody to acetylcholine receptor in myasthenia gravis: investigation by plasma exchange. Neurology 28:266–272

    CAS  PubMed  Google Scholar 

  113. Lindstrom JM, Seybold ME, Lennon VA et al (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26:1054–1059

    CAS  PubMed  Google Scholar 

  114. Lennon VA, Lambert EH (1980) Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature 285:238–240

    CAS  PubMed  Google Scholar 

  115. Rødgaard A, Nielsen FC, Djurup R et al (1987) Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol 67:82–88

    PubMed  PubMed Central  Google Scholar 

  116. Heinemann S, Bevan S, Kullberg R et al (1977) Modulation of acetylcholine receptor by antibody against the receptor. Proc Natl Acad Sci USA 74:3090–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Drachman DB, Angus CW, Adams RN et al (1978) Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 298:1116–1122. https://doi.org/10.1056/NEJM197805182982004

    Article  CAS  PubMed  Google Scholar 

  118. Loutrari H, Kokla A, Tzartos SJ (1992) Passive transfer of experimental myasthenia gravis via antigenic modulation of acetylcholine receptor. Eur J Immunol 22:2449–2452. https://doi.org/10.1002/eji.1830220939

    Article  CAS  PubMed  Google Scholar 

  119. Losen M, Martínez-Martínez P, Phernambucq M et al (2008) Treatment of myasthenia gravis by preventing acetylcholine receptor modulation. Ann N Y Acad Sci 1132:174–179. https://doi.org/10.1196/annals.1405.034

    Article  CAS  PubMed  Google Scholar 

  120. Almon RR, Andrew CG, Appel SH (1974) Serum globulin in myasthenia gravis: inhibition of alpha-bungarotoxin binding to acetylcholine receptors. Science 186:55–57

    CAS  PubMed  Google Scholar 

  121. Gomez CM, Richman DP (1983) Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci USA 80:4089–4093

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hara H, Hayashi K, Ohta K et al (1993) Detection and characterization of blocking-type anti-acetylcholine receptor antibodies in sera from patients with myasthenia gravis. Clin Chem 39:2053–2057

    CAS  PubMed  Google Scholar 

  123. Lang B, Richardson G, Rees J et al (1988) Plasma from myasthenia gravis patients reduces acetylcholine receptor agonist-induced Na+ flux into TE671 cell line. J Neuroimmunol 19:141–148

    CAS  PubMed  Google Scholar 

  124. Gilhus NE (2016) Myasthenia Gravis. N Engl J Med 375:2570–2581. https://doi.org/10.1056/NEJMra1602678

    Article  CAS  PubMed  Google Scholar 

  125. Hoch W, McConville J, Helms S et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368. https://doi.org/10.1038/85520

    Article  CAS  PubMed  Google Scholar 

  126. Vincent A, Huda S, Cao M et al (2018) Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci 1413:143–153. https://doi.org/10.1111/nyas.13592

    Article  CAS  PubMed  Google Scholar 

  127. Evoli A, Alboini PE, Damato V et al (2018) Myasthenia gravis with antibodies to MuSK: an update. Ann N Y Acad Sci 1412:82–89. https://doi.org/10.1111/nyas.13518

    Article  CAS  PubMed  Google Scholar 

  128. Park J-Y, Ikeda H, Ikenaga T, Ono F (2012) Acetylcholine receptors enable the transport of rapsyn from the Golgi complex to the plasma membrane. J Neurosci 32:7356–7363. https://doi.org/10.1523/JNEUROSCI.0397-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Klooster R, Plomp JJ, Huijbers MG et al (2012) Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 135:1081–1101. https://doi.org/10.1093/brain/aws025

    Article  PubMed  Google Scholar 

  130. Huijbers MG, Zhang W, Klooster R et al (2013) MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci 110:20783–20788. https://doi.org/10.1073/pnas.1313944110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Williams CL, Hay JE, Huiatt TW, Lennon VA (1992) Paraneoplastic IgG striational autoantibodies produced by clonal thymic B cells and in serum of patients with myasthenia gravis and thymoma react with titin. Lab Invest 66:331–336

    CAS  PubMed  Google Scholar 

  132. Skeie GO, Aarli JA, Matre R et al (1997) Titin antibody positive myasthenia gravis patients have a cellular immune response against the main immunogenic region of titin. Eur J Neurol 4:131–137. https://doi.org/10.1111/j.1468-1331.1997.tb00318.x

    Article  CAS  PubMed  Google Scholar 

  133. Mygland ÅSE, Tysnes O-B, Aarli JA et al (1992) Ryanodine receptor autoantibodies in myasthenia gravis patients with a thymoma. Ann Neurol 32:589–591. https://doi.org/10.1002/ana.410320419

    Article  CAS  PubMed  Google Scholar 

  134. Skeie GO, Lunde PK, Sejersted OM et al (1998) Myasthenia gravis sera containing antiryanodine receptor antibodies inhibit binding of [3H]-ryanodine to sarcoplasmic reticulum. Muscle Nerve 21:329–335

    CAS  PubMed  Google Scholar 

  135. Romi F, Skeie GO, Vedeler C et al (2000) Complement activation by titin and ryanodine receptor autoantibodies in myasthenia gravis. A study of IgG subclasses and clinical correlations. J Neuroimmunol 111:169–176

    CAS  PubMed  Google Scholar 

  136. Skeie GO, Aarli JA, Gilhus NE (2006) Titin and ryanodine receptor antibodies in myasthenia gravis. Acta Neurol Scand 113:19–23. https://doi.org/10.1111/j.1600-0404.2006.00608.x

    Article  Google Scholar 

  137. Zisimopoulou P, Evangelakou P, Tzartos J et al (2014) A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52:139–145. https://doi.org/10.1016/j.jaut.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  138. Zhang B, Shen C, Bealmear B et al (2014) Autoantibodies to agrin in myasthenia gravis patients. PLoS One 9:e91816. https://doi.org/10.1371/journal.pone.0091816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gallardo E, Martínez-Hernández E, Titulaer MJ et al (2014) Cortactin autoantibodies in myasthenia gravis. Autoimmun Rev 13:1003–1007. https://doi.org/10.1016/j.autrev.2014.08.039

    Article  CAS  PubMed  Google Scholar 

  140. Cortés-Vicente E, Gallardo E, Martínez MÁ et al (2016) Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol 73:1099. https://doi.org/10.1001/jamaneurol.2016.2032

    Article  PubMed  Google Scholar 

  141. Illa I, Cortés-Vicente E, Martínez MÁ, Gallardo E (2018) Diagnostic utility of cortactin antibodies in myasthenia gravis. Ann N Y Acad Sci 1412:90–94. https://doi.org/10.1111/nyas.13502

    Article  CAS  PubMed  Google Scholar 

  142. Lindstrom JM, Engel AG, Seybold ME et al (1976) Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. J Exp Med 144:739–753

    CAS  PubMed  Google Scholar 

  143. Nastuk WL, Plescia OJ, Osserman KE (1960) Changes in serum complement activity in patients with myasthenia gravis. Proc Soc Exp Biol Med 105:177–184

    CAS  PubMed  Google Scholar 

  144. Engel AG, Lambert EH, Gomez MR (1977) A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol 1:315–330. https://doi.org/10.1002/ana.410010403

    Article  CAS  PubMed  Google Scholar 

  145. Sahashi K, Engel AG, Linstrom JM et al (1978) Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J Neuropathol Exp Neurol 37:212–223

    CAS  PubMed  Google Scholar 

  146. Fazekas A, Komoly S, Bozsik B, Szobor A (1986) Myasthenia gravis: demonstration of membrane attack complex in muscle end-plates. - PubMed - NCBI. Clin Neuropathol 2:78–83

    Google Scholar 

  147. Engel AG, Arahata K (1987) The membrane attack complex of complement at the endplate in myasthenia gravis. Ann N Y Acad Sci 505:326–332

    CAS  PubMed  Google Scholar 

  148. Casali P, Borzini P, Zanussi C (1976) Letter: immune complexes in myasthenia gravis. Lancet (London, England) 2:378

    CAS  Google Scholar 

  149. Barohn RJ, Brey RL (1993) Soluble terminal complement components in human myasthenia gravis. Clin Neurol Neurosurg 95:285–290

    CAS  PubMed  Google Scholar 

  150. Kamolvarin N, Hemachudha T, Ongpipattanakul B et al (1991) Plasma C3c in immune-mediated neurological diseases: a preliminary report. Acta Neurol Scand 83:382–387

    CAS  PubMed  Google Scholar 

  151. Basta M, Illa I, Dalakas MC (1996) Increased in vitro uptake of the complement C3b in the serum of patients with Guillain-Barré syndrome, myasthenia gravis and dermatomyositis. J Neuroimmunol 71:227–229

    CAS  PubMed  Google Scholar 

  152. Romi F, Kristoffersen EK, Aarli JA, Gilhus NE (2005) The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo. J Neuroimmunol 158:191–194. https://doi.org/10.1016/j.jneuroim.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  153. Lennon VA, Seybold ME, Lindstrom JM et al (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 147:973–983

    CAS  PubMed  Google Scholar 

  154. Christadoss P (1988) C5 gene influences the development of murine myasthenia gravis. J Immunol 140:2589–2592

    CAS  PubMed  Google Scholar 

  155. Tüzün E, Scott BG, Goluszko E et al (2003) Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J Immunol 171:3847–3854

    PubMed  Google Scholar 

  156. Biesecker G, Gomez CM (1989) Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 142:2654–2659

    CAS  PubMed  Google Scholar 

  157. Chamberlain-Banoub J, Neal JW, Mizuno M et al (2006) Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats. Clin Exp Immunol 146:278–286. https://doi.org/10.1111/j.1365-2249.2006.03198.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin F, Kaminski HJ, Conti-Fine BM et al (2002) Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. J Clin Invest 110:1269–1274. https://doi.org/10.1172/JCI16086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Morgan BP, Chamberlain-Banoub J, Neal JW et al (2006) The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin Exp Immunol 146:294–302. https://doi.org/10.1111/j.1365-2249.2006.03205.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kusner LL, Halperin JA, Kaminski HJ (2013) Cell surface complement regulators moderate experimental myasthenia gravis pathology. Muscle Nerve 47:33–40. https://doi.org/10.1002/mus.23448

    Article  CAS  PubMed  Google Scholar 

  161. Asghar SS, Pasch MC (2000) Therapeutic inhibition of the complement system. Y2K update. Front Biosci 5:E63–E81

    CAS  PubMed  Google Scholar 

  162. Kusner LL, Satija N, Cheng G, Kaminski HJ (2014) Targeting therapy to the neuromuscular junction: proof of concept. Muscle Nerve 49:749–756. https://doi.org/10.1002/mus.24057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Piddlesden SJ, Jiang S, Levin JL et al (1996) Soluble complement receptor 1 (sCR166) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 71:173–177

    CAS  PubMed  Google Scholar 

  164. Hepburn NJ, Chamberlain-Banoub JL, Williams AS et al (2008) Prevention of experimental autoimmune myasthenia gravis by rat Crry-Ig: a model agent for long-term complement inhibition in vivo. Mol Immunol 45:395–405. https://doi.org/10.1016/j.molimm.2007.06.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hepburn NJ, Williams AS, Nunn MA et al (2007) In Vivo Characterization and Therapeutic Efficacy of a C5-specific Inhibitor from the Soft Tick Ornithodoros moubata. J Biol Chem 282:8292–8299. https://doi.org/10.1074/jbc.M609858200

    Article  CAS  PubMed  Google Scholar 

  166. Soltys J, Kusner LL, Young A et al (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65:67–75. https://doi.org/10.1002/ana.21536

    Article  PubMed  PubMed Central  Google Scholar 

  167. Tüzün E, Li J, Saini SS et al (2007) Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J Neuroimmunol 182:167–176. https://doi.org/10.1016/j.jneuroim.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  168. Huda R, Tüzün E, Christadoss P (2013) Complement C2 siRNA mediated therapy of myasthenia gravis in mice. J Autoimmun 42:94–104. https://doi.org/10.1016/j.jaut.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  169. Zhou Y, Gong B, Lin F et al (2007) Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol 179:8562–8567

    CAS  PubMed  Google Scholar 

  170. Evoli A, Tonali PA, Padua L et al (2003) Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 126:2304–2311. https://doi.org/10.1093/brain/awg223

    Article  PubMed  Google Scholar 

  171. Gajdos P, Chevret S, Clair B et al (1997) Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Ann Neurol 41:789–796. https://doi.org/10.1002/ana.410410615

    Article  CAS  PubMed  Google Scholar 

  172. Gajdos P, Chevret S, Toyka KV (2012) Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev 12:CD002277. https://doi.org/10.1002/14651858.CD002277.pub4

    Article  PubMed  Google Scholar 

  173. Dau PC (1982) Plasmapheresis in myasthenia gravis. Prog Clin Biol Res 88:265–285

    CAS  PubMed  Google Scholar 

  174. Kornfeld P, Ambinder EP, Mittag T et al (1981) Plasmapheresis in refractory generalized myasthenia gravis. Arch Neurol 38:478–481. https://doi.org/10.1001/archneur.1981.00510080040003

    Article  CAS  PubMed  Google Scholar 

  175. Goti P, Spinelli A, Marconi G et al (1995) Comparative effects of plasma exchange and pyridostigmine on respiratory muscle strength and breathing pattern in patients with myasthenia gravis. Thorax 50:1080–1086. https://doi.org/10.1136/thx.50.10.1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nagayasu T, Yamayoshi T, Matsumoto K et al (2005) Beneficial effects of plasmapheresis before thymectomy on the outcome in myasthenia gravis. Jpn J Thorac Cardiovasc Surg 53:2–7. https://doi.org/10.1007/s11748-005-1001-y

    Article  PubMed  Google Scholar 

  177. Palace J, Newsom-Davis J, Lecky B (1998) A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Myasthenia Gravis Study Group. Neurology 50:1778–1783

    CAS  PubMed  Google Scholar 

  178. Sanders DB, Hart IK, Mantegazza R et al (2008) An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology 71:400–406. https://doi.org/10.1212/01.wnl.0000312374.95186.cc

    Article  CAS  PubMed  Google Scholar 

  179. Pasnoor M, He J, Herbelin L et al (2016) A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology 87:57–64. https://doi.org/10.1212/WNL.0000000000002795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Heckmann JM, Rawoot A, Bateman K et al (2011) A single-blinded trial of methotrexate versus azathioprine as steroid-sparing agents in generalized myasthenia gravis. BMC Neurol 11:97. https://doi.org/10.1186/1471-2377-11-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Heckmann JM, Bateman K (2017) Letter re: a randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology 88:417.2-417. https://doi.org/10.1212/WNL.0000000000003547

    Article  Google Scholar 

  182. Tandan R, Hehir MK, Waheed W, Howard DB (2017) Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve 56:185–196. https://doi.org/10.1002/mus.25597

    Article  CAS  PubMed  Google Scholar 

  183. Wolfe GI, Kaminski HJ, Cutter GR (2016) Randomized trial of thymectomy in myasthenia gravis. N Engl J Med 375:2005–2007. https://doi.org/10.1056/NEJMc1611704

    Article  Google Scholar 

  184. Sussman J, Farrugia ME, Maddison P et al (2015) Myasthenia gravis: association of British Neurologists’ management guidelines. Pract Neurol 15:199–206. https://doi.org/10.1136/practneurol-2015-001126

    Article  PubMed  Google Scholar 

  185. Brodsky RA, Young NS, Antonioli E et al (2008) Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood 111:1840–1847. https://doi.org/10.1182/blood-2007-06-094136

    Article  CAS  PubMed  Google Scholar 

  186. Zuraw BL, Cicardi M, Longhurst HJ et al (2015) Phase II study results of a replacement therapy for hereditary angioedema with subcutaneous C1-inhibitor concentrate. Allergy 70:1319–1328. https://doi.org/10.1111/all.12658

    Article  CAS  PubMed  Google Scholar 

  187. Chen M, Riedl MA (2017) Emerging therapies in hereditary angioedema. Immunol Allergy Clin N Am 37:585–595. https://doi.org/10.1016/j.iac.2017.03.003

    Article  Google Scholar 

  188. Howard JF, Utsugisawa K, Benatar M et al (2017) Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol 16:976–986. https://doi.org/10.1016/S1474-4422(17)30369-1

    Article  CAS  PubMed  Google Scholar 

  189. Sheridan D, Yu Z-X, Zhang Y et al (2018) Design and preclinical characterization of ALXN1210: a novel anti-C5 antibody with extended duration of action. PLoS One 13:e0195909. https://doi.org/10.1371/journal.pone.0195909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McKeage K (2019) Ravulizumab: first global approval. Drugs 79:347–352. https://doi.org/10.1007/s40265-019-01068-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne L. Chamberlain.

Ethics declarations

Conflicts of interest

AJ: Principal Investigator for the ECU301 and ECU302 trials on Eculizumab in neuromyelitis optica in the UK. AJ has also received research grants from Alexion Pharmaceuticals, Biogen Idec and speaker fees from Biogeb, Chugai, Sanofi-Genzyme and Terumo-BCT. MM: Adboard consulting for Alexion Pharmaceuticals. JC, SH, DH and BPM have no conflicts of interest.

Ethical standards statement

This is a review article and does not involve any animal or human research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlain, J.L., Huda, S., Whittam, D.H. et al. Role of complement and potential of complement inhibitors in myasthenia gravis and neuromyelitis optica spectrum disorders: a brief review. J Neurol 268, 1643–1664 (2021). https://doi.org/10.1007/s00415-019-09498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09498-4

Keywords

Navigation