Skip to main content

Advertisement

Log in

Imaging respiratory muscle quality and function in Duchenne muscular dystrophy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

Duchenne muscular dystrophy (DMD) is characterized by damage to muscles including the muscles involved in respiration. Dystrophic muscles become weak and infiltrated with fatty tissue, resulting in progressive respiratory impairment. The objective of this study was to assess respiratory muscle quality and function in DMD using magnetic resonance imaging and to determine the relationship to clinical respiratory function.

Methods

Individuals with DMD (n = 36) and unaffected controls (n = 12) participated in this cross sectional magnetic resonance imaging study. Participants underwent dynamic imaging of the thorax to assess diaphragm and chest wall mobility and chemical shift-encoded imaging of the chest and abdomen to determine fatty infiltration of the accessory respiratory muscles. Additionally, clinical pulmonary function measures were obtained.

Results

Thoracic cavity area was decreased in individuals with DMD compared to controls during tidal and maximal breathing. Individuals with DMD had reduced chest wall movement in the anterior–posterior direction during maximal inspirations and expirations, but diaphragm descent during maximal inspirations (normalized to height) was only decreased in a subset of individuals with maximal inspiratory pressures less than 60% predicted. Muscle fat fraction was elevated in all three expiratory muscles assessed (p < 0.001), and the degree of fatty infiltration correlated with percent predicted maximal expiratory pressures (r =  − 0.70, p < 0.001). The intercostal muscles demonstrated minimal visible fatty infiltration; however, this analysis was qualitative and resolution limited.

Interpretation

This magnetic resonance imaging investigation of diaphragm movement, chest wall movement, and accessory respiratory muscle fatty infiltration provides new insights into the relationship between disease progression and clinical respiratory function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mendell JR, Shilling C, Leslie ND et al (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313. https://doi.org/10.1002/ana.23528

    Article  CAS  PubMed  Google Scholar 

  2. Moat SJ, Bradley DM, Salmon R et al (2013) Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet 21:1049

    Article  CAS  Google Scholar 

  3. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  Google Scholar 

  4. Peverelli L, Testolin S, Villa L et al (2015) Histologic muscular history in steroid-treated and untreated patients with Duchenne dystrophy. Neurology 85:1886–1893

    Article  CAS  Google Scholar 

  5. Petrof BJ, Shrager JB, Stedman HH et al (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci 90:3710–3714

    Article  CAS  Google Scholar 

  6. LoMauro A, Romei M, Gandossini S et al (2018) Evolution of respiratory function in Duchenne muscular dystrophy from childhood to adulthood. Eur Respir J 51:1701418

    Article  Google Scholar 

  7. McDonald CM, Meier T, Voit T et al (2016) Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy. Neuromuscul Disord 26:473–480. https://doi.org/10.1016/j.nmd.2016.05.008

    Article  PubMed  Google Scholar 

  8. Finder J, Mayer OH, Sheehan D et al (2017) Pulmonary endpoints in Duchenne muscular dystrophy. A workshop summary. Am J Respir Crit Care Med 196:512–519. https://doi.org/10.1164/rccm.201703-0507WS

    Article  PubMed  Google Scholar 

  9. Henricson EK, Abresch RT, Cnaan A et al (2013) The Cooperative International Neuromuscular Research Group Duchenne Natural History Study: glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures. Muscle Nerve 48:55–67. https://doi.org/10.1002/mus.23808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hahn A, Bach JR, Delaubier A et al (1997) Clinical implications of maximal respiratory pressure determinations for individuals with Duchenne muscular dystrophy. Arch Phys Med Rehabil 78:1–6

    Article  CAS  Google Scholar 

  11. Khirani S, Ramirez A, Aubertin G et al (2014) Respiratory muscle decline in Duchenne muscular dystrophy. Pediatr Pulmonol 49:473–481. https://doi.org/10.1002/ppul.22847

    Article  PubMed  Google Scholar 

  12. Mayer OH, Finkel RS, Rummey C et al (2015) Characterization of pulmonary function in Duchenne muscular dystrophy: pulmonary function in DMD. Pediatr Pulmonol 50:487–494. https://doi.org/10.1002/ppul.23172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carlier PG, Marty B, Scheidegger O et al (2016) Skeletal muscle quantitative nuclear magnetic resonance imaging and spectroscopy as an outcome measure for clinical trials. J Neuromuscul Dis 3:1–28. https://doi.org/10.3233/JND-160145

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gaeta M, Scribano E, Mileto A et al (2011) Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification—a feasibility study. Radiology 259:487–494. https://doi.org/10.1148/radiol.10101108

    Article  PubMed  Google Scholar 

  15. Arpan I, Forbes SC, Lott DJ et al (2013) T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy. NMR Biomed 26:320–328. https://doi.org/10.1002/nbm.2851

    Article  CAS  PubMed  Google Scholar 

  16. Vohra RS, Lott D, Mathur S et al (2015) Magnetic resonance assessment of hypertrophic and pseudo-hypertrophic changes in lower leg muscles of boys with Duchenne muscular dystrophy and their relationship to functional measurements. PLoS ONE 10:e0128915. https://doi.org/10.1371/journal.pone.0128915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burakiewicz J, Sinclair CDJ, Fischer D et al (2017) Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. J Neurol 264:2053–2067. https://doi.org/10.1007/s00415-017-8547-3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bonati U, Hafner P, Schädelin S et al (2015) Quantitative muscle MRI: A powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 25:679–685. https://doi.org/10.1016/j.nmd.2015.05.006

    Article  PubMed  Google Scholar 

  19. Barnard AM, Willcocks RJ, Finanger EL et al (2018) Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS ONE 13:e0194283

    Article  Google Scholar 

  20. Ricotti V, Evans MR, Sinclair CD et al (2016) Upper limb evaluation in Duchenne muscular dystrophy: fat-water quantification by MRI, muscle force and function define endpoints for clinical trials. PLoS ONE 11:e0162542

    Article  Google Scholar 

  21. Bruin PFD, Ueki J, Bush A et al (1997) Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy. Thorax 52:472–475. https://doi.org/10.1136/thx.52.5.472

    Article  PubMed  PubMed Central  Google Scholar 

  22. Laviola M, Priori R, D’Angelo MG, Aliverti A (2018) Assessment of diaphragmatic thickness by ultrasonography in Duchenne muscular dystrophy (DMD) patients. PLoS ONE 13:e0200582

    Article  Google Scholar 

  23. Kondo T, Kobayashi I, Taguchi Y et al (2000) A dynamic analysis of chest wall motions with MRI in healthy young subjects. Respirology 5:19–25

    Article  CAS  Google Scholar 

  24. Mankodi A, Kovacs W, Norato G et al (2017) Respiratory magnetic resonance imaging biomarkers in Duchenne muscular dystrophy. Ann Clin Transl Neurol 4:655–662. https://doi.org/10.1002/acn3.440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bishop CA, Ricotti V, Sinclair CDJ et al (2018) Semi-automated analysis of diaphragmatic motion with dynamic magnetic resonance imaging in healthy controls and non-ambulant subjects with Duchenne muscular dystrophy. Front Neurol. https://doi.org/10.3389/fneur.2018.00009

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quanjer PH, Stanojevic S, Cole TJ et al (2012) Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 40:1324–1343. https://doi.org/10.1183/09031936.00080312

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilson SH, Cooke NT, Edwards RH, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in Caucasian adults and children. Thorax 39:535–538

    Article  CAS  Google Scholar 

  28. Triplett WT, Baligand C, Forbes SC et al (2014) Chemical shift-based MRI to measure fat fractions in dystrophic skeletal muscle: MR measurements of fat fraction in dystrophic muscles. Magn Reson Med 72:8–19. https://doi.org/10.1002/mrm.24917

    Article  CAS  PubMed  Google Scholar 

  29. Hollin IL, Peay H, Fischer R et al (2018) Engaging patients and caregivers in prioritizing symptoms impacting quality of life for Duchenne and Becker muscular dystrophy. Qual Life Res Int J Qual Life Asp Treat Care Rehabil 27:2261–2273. https://doi.org/10.1007/s11136-018-1891-7

    Article  Google Scholar 

  30. Harlaar L, Ciet P, van der Ploeg AT et al (2018) Imaging of respiratory muscles in neuromuscular disease: a review. Neuromuscul Disord 28:246–256. https://doi.org/10.1016/j.nmd.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  31. Lamb MM, West NA, Ouyang L et al (2016) Corticosteroid treatment and growth patterns in ambulatory males with Duchenne muscular dystrophy. J Pediatr 173:207–213.e3. https://doi.org/10.1016/j.jpeds.2016.02.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mantilla CB, Seven YB, Zhan W-Z, Sieck GC (2010) Diaphragm motor unit recruitment in rats. Respir Physiol Neurobiol 173:101–106. https://doi.org/10.1016/j.resp.2010.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  33. Melissinos CG, Bruce EN, Goldman MD et al (1981) Pattern of diaphragmatic activity during forced expiratory vital capacity. J Appl Physiol 51:1515–1525. https://doi.org/10.1152/jappl.1981.51.6.1515

    Article  CAS  PubMed  Google Scholar 

  34. Stern LZ, Payne CM, Gruener R et al (1975) Intercostal muscle biopsy in human neuromuscular disease. Histochemical and electron microscopic studies. J Neurol Neurosurg Psychiatry 38:900–910

    Article  CAS  Google Scholar 

  35. Lacourpaille L, Gross R, Hug F et al (2017) Effects of Duchenne muscular dystrophy on muscle stiffness and response to electrically-induced muscle contraction: a 12-month follow-up. Neuromuscul Disord 27:214–220. https://doi.org/10.1016/j.nmd.2017.01.001

    Article  PubMed  Google Scholar 

  36. Lo Mauro A, Aliverti A (2016) Physiology of respiratory disturbances in muscular dystrophies. Breathe 12:318–327. https://doi.org/10.1183/20734735.012716

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hollingsworth KG, Higgins DM, McCallum M et al (2014) Investigating the quantitative fidelity of prospectively under sampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 72:1610–1619. https://doi.org/10.1002/mrm.25072

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Failed Regeneration in the Muscular Dystrophies: Inflammation, Fibrosis, and Fat (National Institute of Arthritis and Musculoskeletal and Skin Diseases: U54 AR052646) and Magnetic Resonance Imaging and Biomarkers in Muscular Dystrophy (National Institute of Arthritis and Musculoskeletal and Skin Diseases: R01 AR056973). The first author was supported by Interdisciplinary Training in Rehabilitation and Neuromuscular Plasticity (National Institute of Child Health and Human Development: T32 HD043730). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A portion of this work was performed at the McKnight Brain Institute at the National High Magnetic Field Laboratory’s AMRIS Facility, which is supported by National Science Foundation Cooperative Agreement no. DMR-1157490 and the state of Florida. We thank each of the participants and their families for their enthusiasm for the study. Also, we thank the AMRIS MRI technologists for assistance acquiring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn A. Walter.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

All human research was approved by the University of Florida Institutional Review Board in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave informed consent prior to inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, A.M., Lott, D.J., Batra, A. et al. Imaging respiratory muscle quality and function in Duchenne muscular dystrophy. J Neurol 266, 2752–2763 (2019). https://doi.org/10.1007/s00415-019-09481-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09481-z

Keywords

Navigation