Skip to main content
Log in

Investigating the role of the corpus callosum in regulating motor overflow in multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The corpus callosum (CC) is commonly affected in multiple sclerosis (MS), however, sensitive behavioral measures of MS-related CC pathology are lacking. The CC is considered a key structure in the mediation of a type of involuntary movement known as motor overflow. In this study, we sought to characterize the impact of CC damage on motor overflow in MS. Twenty MS participants and 20 controls performed a unilateral force production task. Motor overflow (involuntary force) in the non-active hand was measured while the active hand performed the task. CC volume and lesion load were calculated for MS participants using T2-weighted MRI. We found no group differences in motor overflow; however, motor overflow correlated significantly with MS disease severity [Expanded disability status scale (EDSS)]. CC damage (lesions and decreased volume) did not correlate with motor overflow. This study suggests that CC damage may not directly lead to changes in the regulation of motor overflow. Rather, findings support the notion that a wider network of structures may mediate the production and suppression of motor overflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Filippi M, Rocca M (2005) MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 252(S5):v16–v24

    Article  PubMed  Google Scholar 

  2. Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Annu Rev Med 53:285–302

    Article  PubMed  CAS  Google Scholar 

  3. Evangelou N, Konz D, Esiri MM et al (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123:1845–1849

    Article  PubMed  Google Scholar 

  4. Ozturk A, Smith SA, Gordon-Lipkin EM et al (2010) MRI of the corpus callosum in multiple sclerosis: association with disability. Mult Scler 16(2):166–177

    Article  PubMed  CAS  Google Scholar 

  5. Barnard RO, Triggs M (1974) Corpus callosum in multiple sclerosis. J Neurol Neurosurg Psychiatry 37(11):1259–1264

    Article  PubMed  CAS  Google Scholar 

  6. Ge Y, Law M, Johnson G et al (2004) Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. J Magn Reson Imaging 20(1):1–7

    Article  PubMed  Google Scholar 

  7. Lin X, Tench CR, Morgan PS et al (2005) ‘Importance sampling’ in MS: use of diffusion tensor tractography to quantify pathology related to specific impairment. J Neurol Sci 237:13–19

    Article  PubMed  Google Scholar 

  8. Lin X, Tench CR, Morgan PS et al (2008) Use of combined and conventional quantitative MRI to quantify pathology related to cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:437–441

    Article  PubMed  CAS  Google Scholar 

  9. Larson EB, Burnison DS, Brown WS (2002) Callosal function in multiple sclerosis: bimanual motor coordination. Cortex 38(2):201–214

    Article  PubMed  Google Scholar 

  10. Pelletier J, Habib M, Lyoncaen O et al (1993) Functional and magnetical-resonance-imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol 50(10):1077–1082

    Article  PubMed  CAS  Google Scholar 

  11. Pelletier J, Suchet L, Witjas T et al (2001) A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 58(1):105–111

    Article  PubMed  CAS  Google Scholar 

  12. Sigal T, Shmuel M, Mark D et al (2012) Diffusion tensor imaging of corpus callosum integrity in multiple sclerosis: correlation with disease variables. J Neuroimaging 22(1):33–37

    Article  PubMed  Google Scholar 

  13. Brown LN, Zhang Y, Mitchell JR et al (2012) Corpus callosum volume and interhemispheric transfer in multiple sclerosis. Can J Neurol Sci 37:615–619

    Google Scholar 

  14. Barkhof F, Tas M, Valk J et al (1998) Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study. J Neurol 245(3):153–158

    Article  PubMed  CAS  Google Scholar 

  15. Manson S, Palace J, Frank JA et al (2006) Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Exp Brain Res 174(4):728–733

    Article  PubMed  Google Scholar 

  16. Lenzi D, Conte A, Mainero C et al (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp 28(7):636–644

    Article  PubMed  Google Scholar 

  17. Hoppner J, Kunesch E, Buchmann J et al (1999) Demyelination and axonal degeneration in corpus callosum assessed by analysis of transcallosally mediated inhibition in multiple sclerosis. Clin Neurophysiol 110(4):748–756

    Article  PubMed  CAS  Google Scholar 

  18. Lee M, Reddy H, Johansen-Berg H et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47(5):606–613

    Article  PubMed  CAS  Google Scholar 

  19. Hubers A, Orekhov Y, Ziemann U (2008) Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity. Eur J Neurosci 28(2):364–371

    Article  PubMed  Google Scholar 

  20. Giovannelli F, Borgheresi A, Balestrieri F et al (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol (London) 587(22):5393–5410

    Article  CAS  Google Scholar 

  21. Hoy KE, Fitzgerald PB, Bradshaw JL et al (2004) Investigating the cortical origins of motor overflow. Brain Res Rev 46:315–327

    Article  PubMed  Google Scholar 

  22. Armatas CA, Summers JJ, Bradshaw JL (1994) Mirror movements in normal adult subjects. J Clin Exp Neuropsychol 16(3):405–412

    Article  PubMed  CAS  Google Scholar 

  23. Georgiou-Karistianis N, Hoy KE, Bradshaw JL et al (2004) Motor overflow in Huntington’s disease. J Neurol Neurosurg Psychiatry 75:904–906

    Article  PubMed  CAS  Google Scholar 

  24. Hoy KE, Fitzgerald PB, Bradshaw JL et al (2004) Motor overflow in Schizophrenia. Psychiatry Res 125:129–137

    Article  PubMed  Google Scholar 

  25. Hoy KE, Georgiou-Karistianis N, Laycock R et al (2007) Using transcranial magnetic stimulation to investigate the cortical origins of motor overflow: a study in schizophrenia and healthy controls. Psychol Med 37:583–594

    Article  PubMed  Google Scholar 

  26. Addamo PK, Farrow M, Hoy KE et al (2009) A developmental study of the influence of task characteristics on motor overflow. Brain Cogn 69:413–419

    Article  PubMed  Google Scholar 

  27. Addamo PK, Farrow M, Hoy KE et al (2009) The influence of task characteristics on younger and older adult motor overflow. Q J Exp Psychol 62(2):239–247

    Article  Google Scholar 

  28. Mayston M, Harrison L, Stephens J (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45(5):583–594

    Article  PubMed  CAS  Google Scholar 

  29. Fujiyama H, Garry MI, Levin O et al (2009) Age-related differences in inhibitory processes during interlimb coordination. Brain Res 1262:38–47

    Article  PubMed  CAS  Google Scholar 

  30. Bartels C, Mertens N, Hofer S et al (2008) Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system. Neuromuscul Disord 18:398–407

    Article  PubMed  Google Scholar 

  31. McDonald W, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis; guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  32. Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  33. Nelson HE (1982) National adult reading test: test manual. NFER-Nelson, Windsor

    Google Scholar 

  34. Armatas CA, Summers JJ, Bradshaw JL (1996) Handedness and performance variability as factors influencing mirror movement occurrence. J Clin Exp Neuropsychol 18(6):823–835

    Article  PubMed  CAS  Google Scholar 

  35. Beck A, Steer RA, Brown GK (1996) Beck depression inventory-second edition manual. The Psychological Corporation, San Antonio TX

    Google Scholar 

  36. Armatas CA, Summers JJ, Bradshaw JL (1996) Strength as a factor influencing mirror movements. Hum Mov Sci 492:1–17

    Google Scholar 

  37. Miller DH, Barkhof F, Frank JA et al (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125(8):1676–1695

    Article  PubMed  Google Scholar 

  38. Ge Y (2006) Multiple sclerosis: the role of MR imaging. Am J Neuroradiol 27:1165–1176

    PubMed  CAS  Google Scholar 

  39. Talairach J, Torneauz P (1993) Referentially oriented cerebral MRI anatomy: Atlas of stereotaxic anatomical correlations for gray and white matter. Thieme Medical Publishers Inc., New York

    Google Scholar 

  40. Anstey KJ, Mack HA, Christensen H et al (2007) Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia 45(8):1911–1920

    Article  PubMed  Google Scholar 

  41. Shrout P, Fleiss JL (1979) Intraclass correlation: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  PubMed  CAS  Google Scholar 

  42. Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A post-mortem morphological study. Brain 112(3):799–835

    Article  PubMed  Google Scholar 

  43. Beauchamp MH, Anderson VA, Catroppa C et al (2009) Implications of reduced callosal area for social skills after severe traumatic brain injury in children. J Neurotrauma 26(10):1645–1654

    Article  PubMed  Google Scholar 

  44. Panizzon MS, Hoff AL, Nordahl TE et al (2003) Sex differences in the corpus callosum of patients with schizophrenia. Schizophr Res 62(1–2):115–122

    Article  PubMed  Google Scholar 

  45. Sun J, Maller JJ, Daskalakis ZJ et al (2009) Morphology of the corpus callosum in treatment-resistant schizophrenia and major depression. Acta Psychiatr Scand 120(4):265–273

    Article  PubMed  CAS  Google Scholar 

  46. Pasini A, D’agati E (2009) Pathophysiology of NSS in ADHD. World J Bio Psychiatry 10(4–2):495–502

    Article  Google Scholar 

  47. Brinkman C (1984) Supplementary motor area of the monkey’s cerebral cortex: short and long term deficits after unilateral ablation and the effects of subsequent callosal section. J Neurosci 4(4):918–929

    PubMed  CAS  Google Scholar 

  48. Weiller C, Ramsay SC, Wise RJS et al (1993) Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 33:181–189

    Article  PubMed  CAS  Google Scholar 

  49. Lepage J-F, Beaule V, Srour M et al (2012) Neurophysiological investigation of congenital mirror movements in a patient with agenesis of the corpus callosum. Brain Stimul 5:137–140

    Article  PubMed  Google Scholar 

  50. Meyer B-U, Roricht S, von Einsiedel HG et al (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118(2):429–440

    Article  PubMed  Google Scholar 

  51. Uttner I, Mai N, Esslinger O et al (2005) Quantitative evaluation of mirror movements in adults with focal brain lesions. Eur J Neurol 12(12):964–975

    Article  PubMed  CAS  Google Scholar 

  52. Ranjeva JP, Audoin B, Duong MVA et al (2005) Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis. Am J Neuroradiol 26(1):119–127

    PubMed  Google Scholar 

Download references

Acknowledgments

Supported by research funds from the School of Psychology and Psychiatry, Monash University.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nellie Georgiou-Karistianis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ternes, AM., Maller, J.J., Fielding, J. et al. Investigating the role of the corpus callosum in regulating motor overflow in multiple sclerosis. J Neurol 260, 1997–2004 (2013). https://doi.org/10.1007/s00415-013-6914-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-6914-2

Keywords

Navigation