Skip to main content

Advertisement

Log in

MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cortical tubers are very common in tuberous sclerosis complex (TSC) and widely vary in size, appearance and location. The relationship between tuber features and clinical phenotype is unclear. The aim of the study is to propose a classification of tuber types along a spectrum of severity, using magnetic resonance imaging (MRI) characteristics in 35 patients with TSC and history of epilepsy, and to investigate the relationship between tuber types and genetics, as well as clinical manifestations. Three types of tubers were identified based on the MRI signal intensity of their subcortical white matter component. (1) Tubers Type A are isointense on volumetric T1 images and subtly hyperintense on T2 weighted and fluid-attenuated inversion recovery (FLAIR); (2) Type B are hypointense on volumetric T1 images and homogeneously hyperintense on T2 weighted and FLAIR; (3) Type C are hypointense on volumetric T1 images, hyperintense on T2 weighted, and heterogeneous on FLAIR characterized by a hypointense central region surrounded by a hyperintense rim. Based on the dominant tuber type present, three distinct patient groups were also identified: Patients with Type A tuber dominance have a milder phenotype. Patients with Type C tuber dominance have more MRI abnormalities such as subependymal giant cell tumors, and were more likely to have an autism spectrum disorder, a history of infantile spasms, and a higher frequency of epileptic seizures, compared to patients who have a dominance in Type B tubers, and especially to those with a Type A dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roach ES, Sparagana SP (2004) Diagnosis of tuberous sclerosis complex. J Child Neurol 19:643–649

    PubMed  Google Scholar 

  2. Bozzao A, Manenti G, Curatolo P (2003) Neuroimaging. In: Curatolo P (ed) Tuberous sclerosis complex: from basic science to clinical phenotypes. Mac Keith Press for the International Child Neurology Association, London, pp 109–123

    Google Scholar 

  3. DiMario FJ (2004) Brain abnormalities in tuberous sclerosis complex. J Child Neurol 19:650–657

    PubMed  Google Scholar 

  4. Griffiths PD, Bolton P, Verity C (1998) White matter abnormalities in tuberous sclerosis complex. Acta Radiol 39:482–486

    CAS  PubMed  Google Scholar 

  5. Ridler K, Suckling J, Higgins N, Bolton P, Bullmore E (2004) Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol 19:658–665

    PubMed  Google Scholar 

  6. Crino PB, Trojanowski JQ, Dichter MA, Eberwine J (1996) Embryonic neuronal markers in TS single-cell molecular pathology. Proc Natl Acad Sci USA 93:14152–14157

    Article  CAS  PubMed  Google Scholar 

  7. Hirose T, Schelthauer BW, Lopes MBS, Gerber HA, Altermatt HJ, Hukee MJ et al (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron microscopic study. Acta Neuropathol 90:387–399

    Article  CAS  PubMed  Google Scholar 

  8. Braffman BH, Bilaniuk LT, Naidich TP, Altman NR, Post MJ, Quencer RM et al (1992) MR imaging of tuberous sclerosis: pathogenesis of the phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology 183:227–238

    CAS  PubMed  Google Scholar 

  9. Suronov AA, Wu X, Weiner HL, Mikell CB, Goodman RR, Crino PD et al (2008) Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 49:53–62

    Article  Google Scholar 

  10. Trombley IK, Mirra SS (1981) Ultrastructure of tuberous sclerosis: cortical tuber and subpendymal tumor. Ann Neurol 9:174–181

    Article  CAS  PubMed  Google Scholar 

  11. Stefansson K, Wollman RL, Huttenlocher PR (1999) Lineage of cells in the central nervous system. In: Gomez MR, Sampson JR, Whittemore VH (eds) Tuberous sclerosis complex, 3rd edn. Oxford University Press, New York, pp 251–262

    Google Scholar 

  12. Doherty C, Goh S, Young Poussaint T, Erdag N, Thiele EA (2005) Prognostic significance of tuber count and location in tuberous sclerosis complex. J Child Neurol 20:837–841

    Article  PubMed  Google Scholar 

  13. Pinto Gama HP, da Rocha AJ, Braga FT, da Silva CJ, Martins Maia AC Jr, de Campos Meirelles RG et al (2006) Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol 36:119–125

    Article  PubMed  Google Scholar 

  14. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  CAS  PubMed  Google Scholar 

  15. Doherty C, Goh S, Poussaint TY, Erdag N, Thiele EA (2006) Prognostic significance of tuber count and location in tuberous sclerosis complex. J Child Neurol 20:837–841

    Article  Google Scholar 

  16. Jansen FE, Vincken KL, Algra A, Anbeek P, Braams O, Nellist M et al (2008) Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology 70:916–923

    Article  CAS  PubMed  Google Scholar 

  17. O’Callaghan FJ, Harris T, Joinson C, Botton P, Noakes M, Presdee D et al (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child 89:530–533

    Article  PubMed  Google Scholar 

  18. Schwartz RA, Fernandez G, Kotulska K, Jozwiak S (2007) Tuberous sclerosis complex: advances in diagnosis, genetics, and management. J Am Acad Dermatol 57:189–202

    Article  PubMed  Google Scholar 

  19. Asano E, Chugani DC, Muzik O, Shen C, Juhász C, Janisse J et al (2000) Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex. Neurology 54:1976–1984

    CAS  PubMed  Google Scholar 

  20. Chugani DC, Chugani HT, Muzik O, Shah JR, Shah AK, Canady A et al (1998) Imaging epileptogenic tuber in children with tuberous sclerosis complex using α-[11C]methyl-l-tryptophan positron emission tomography. Ann Neurol 44:858–866

    Article  CAS  PubMed  Google Scholar 

  21. Fedi M, Reutens DC, Andermann F, Okazawa H, Boling W, White C et al (2003) alpha-[11C]-Methyl-l-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res 52:203–213

    Article  PubMed  Google Scholar 

  22. Jansen FE, Braun KPJ, van Nieuwenhuizen O, Huiskamp G, Vincken KL, van Huffelen AC et al (2003) Diffusion-weighted magnetic resonance imaging and identification of the epileptogenic tuber in patient with tuberous sclerosis. Arch Neurol 60:1580–1584

    Article  PubMed  Google Scholar 

  23. Major P, Rakowski S, Simon MV, Cheng ML, Eskandar E, Baron J et al (2009) Are cortical tubers epileptogenic? Evidence from electrocorticography. Epilepsia 50:147–154

    Article  PubMed  Google Scholar 

  24. Pellizzi GB (1901) Contnibuto allo studio dell’idiozia: rivisita sperimentale di freniatnia e medicine legate delle alienazioni mental. Riv Sper Freniatr 27:265–269

    Google Scholar 

  25. Chu-shore CJ, Major P, Montenegro M, Thiele EA (2009) Cyst-like tubers are associated with TSC2 and epilepsy in tuberous sclerosis complex. Neurology 72:1165–1169

    Article  PubMed  Google Scholar 

  26. Marti-Bonmati L, Menor F, Dosda R (2000) Tuberous sclerosis: differences between cerebral and cerebellar cortical tubers in a pediatric population. AJNR Am J Neuroradiol 21:557–560

    CAS  PubMed  Google Scholar 

  27. Jurkiewicz E, Jozwiak S, Bekiesinska-Figatowska M, Papula-Kosciesza I, Walecki J (2006) Cyst-like cortical tubers in patients with tuberous sclerosis complex: MR imaging with the FLAIR sequence. Pediatr Radiol 36:498–501

    Article  PubMed  Google Scholar 

  28. Firat AK, Karakas HM, Erdem G, Yakinci C, Bicak U (2006) Diffusion weighted MR findings of brain involvement in tuberous sclerosis. Diagn Interv Radiol 12:57–60

    PubMed  Google Scholar 

  29. Goh S, Butler W, Thiele EA (2004) Subpendymal giant cell tumors in tuberous sclerosis complex. Neurology 63:1457–1461

    PubMed  Google Scholar 

  30. Shepherd CW, Gomez MR, Lie JT, Crowson CS (1991) Causes of death in patients with tuberous sclerosis. Mayo Clin Proc 66:792–796

    CAS  PubMed  Google Scholar 

  31. Goodman M, Lamm SH, Engel A, Sheperd CW, Houser OW, Gomez MR (1997) Cortical tuber counts: a biomarker indicating neurologic severity of tuberous sclerosis complex. J Child Neurol 21:85–90

    Article  Google Scholar 

  32. Makki MI, Chugani DC, Janisse J, Chugani HT (2007) Characteristics of abnormal diffusivity in normal-appearing white matter investigated with diffusion tensor MR imaging in tuberous sclerosis complex. AJNR Am J Neuroradiol 28:1662–1667

    Article  CAS  PubMed  Google Scholar 

  33. Sener RN (2002) Tuberous sclerosis: diffusion MRI findings in the brain. Eur Radiol 12:138–143

    Article  CAS  PubMed  Google Scholar 

  34. Chandra PS, Salamon N, Huang J, Wu JY, Koh S, Vinters HV et al (2006) FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 47:1543–1549

    Article  PubMed  Google Scholar 

  35. Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med 9:88–100

    Article  CAS  PubMed  Google Scholar 

  36. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared to TSC1, disease in multiple organs. Am J Hum Genet 68:64–80

    Article  CAS  PubMed  Google Scholar 

  37. Jansen FE, Braams O, Vincken KL, Algra A, Anbeek P, Jennekens-Schinkel A et al (2008) Overlapping neurologic and cognitive phenotypes in patients with TSC1 or TSC2 mutations. Neurology 70:908–915

    Article  CAS  PubMed  Google Scholar 

  38. Strizhera GD, Carsillo T, Kruger WD, Sullivan EJ, Ryu JH, Henske EP (2001) The spectrum of mutations in TSC1 and TSC2 in women with tuberous sclerosis and lymphangiomyomatosis. Am J Resp Crit Care Med 163:253–258

    Google Scholar 

  39. de Vries PJ, Howe CJ (2007) The tuberous sclerosis complex proteins—a GRIPP on cognition and neurodevelopment. Trends Mol Med 13:319–326

    Article  PubMed  Google Scholar 

  40. Joinson C, O’Callaghan FJK, Osborne JP, Martyn C, Harris T, Bolton PF (2003) Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis. Psychol Med 33:335–344

    Article  CAS  PubMed  Google Scholar 

  41. Winterkorne EB, Pulsifer MB, Thiele EA (2007) Cognitive prognosis of patients with tuberous sclerosis complex. Neurology 68:62–64

    Article  Google Scholar 

  42. Gomez MR, Sampson JR, Whittemore VH (1999) Tuberous sclerosis complex, 3rd edn. Oxford University Press, New York

    Google Scholar 

  43. Goh S, Kwiatkowski DJ, Dorer DJ, Thiele EA (2005) Infantile spasms and intellectual outcomes in children with tuberous sclerosis complex. Neurology 65:235–238

    Article  PubMed  Google Scholar 

  44. Jozwiak S, Goodman M, Lamm SH (1998) Poor mental development in patients with tuberous sclerosis complex. Arch Neurol 55:379–384

    Article  CAS  PubMed  Google Scholar 

  45. Curatolo P, Seri S, Verdecchia M, Bomnardieri R (2001) Infantile spasms in tuberous sclerosis complex. Brain Dev 23:502–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Miguel Chagnon, Adam Numis and Larry MacDonald for providing advice and information regarding statistical analysis. This work was supported by a scholarship by the Canadian Institutes of Health Research (CIHR), awarded to Anne Gallagher, Ph.D. as well as by the Carol and James Herscot Center for Tuberous Sclerosis Complex.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Thiele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, A., Grant, E.P., Madan, N. et al. MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257, 1373–1381 (2010). https://doi.org/10.1007/s00415-010-5535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5535-2

Keywords

Navigation