Skip to main content
Log in

Decreased brain activation to tongue movements in amyotrophic lateral sclerosis with bulbar involvement but not Kennedy syndrome

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Neuroimaging studies in amyotrophic lateral sclerosis (ALS) investigating movements of the hands have in general found increased activation compared to healthy controls, which has been interpreted in terms of cortical adaptation as a result of corticospinal tract damage. Here, we investigated brain activations to vertical tongue movements using functional MRI at 3 tesla. Whereas healthy controls, patients with Kennedy syndrome, and ALS patients without bulbar involvement showed robust and indistinguishable activations in pre- and postcentral areas and the thalamus, ALS patients with bulbar involvement showed a significant decrease of cortical activity and missing thalamic activity. This decrease stands in marked contrast to the increase of activity observed in ALS patients when performing limb movements. We discuss these divergent findings with regard to the different physiological properties of tongue and limb movements. These findings may also help to explain the faster time-course of the disease in patients with bulbar involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond MC, Kollias SS (2002) Reproducibility of primary motor cortex somatotopy under controlled conditions. AJNR Am J Neuroradiol 23:1524–1532

    PubMed  Google Scholar 

  2. Armon C, Moses D (1998) Linear estimates of rates of disease progression as predictors of survival in patients with ALS entering clinical trials. J Neurol Sci 160 Suppl 1:S37–S41

    Article  PubMed  CAS  Google Scholar 

  3. Bailey EF, Rice AD, Fuglevand AJ (2007) Firing patterns of human genioglossus motor units during voluntary tongue movement. J Neurophysiol 97:933–936

    Article  PubMed  Google Scholar 

  4. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    PubMed  CAS  Google Scholar 

  5. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  PubMed  CAS  Google Scholar 

  6. Cappellari A, Brioschi A, Barbieri S, Braga M, Scarlato G, Silani V (1999) A tentative interpretation of electromyographic regional differences in bulbar- and limb-onset ALS. Neurology 52:644–646

    PubMed  CAS  Google Scholar 

  7. Chio A, Mora G, Leone M, Mazzini L, Cocito D, Giordana MT, Bottacchi E, Mutani R (2002) Early symptom progression rate is related to ALS outcome: a prospective population-based study. Neurology 59:99–103

    PubMed  CAS  Google Scholar 

  8. Coope S (1953) Muscle spindles in the intrinsic muscles of the human tongue. J Physiol 122:193–202

    Google Scholar 

  9. Cudkowicz ME, Shefner JM, Schoenfeld DA, Brown RH Jr, Johnson H, Qureshi M, Jacobs M, Rothstein JD, Appel SH, Pascuzzi RM, Heiman-Patterson TD, Donofrio PD, David WS, Russell JA, Tandan R, Pioro EP, Felice KJ, Rosenfeld J, Mandler RN, Sachs GM, Bradley WG, Raynor EM, Baquis GD, Belsh JM, Novella S, Goldstein J, Hulihan J (2003) A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 61:456–464

    PubMed  CAS  Google Scholar 

  10. Czaplinski A, Yen AA, Appel SH (2006) Amyotrophic lateral sclerosis: early predictors of prolonged survival. J Neurol 253:1428–1436

    Article  PubMed  Google Scholar 

  11. Czaplinski A, Yen AA, Simpson EP, Appel SH (2006) Predictability of disease progression in amyotrophic lateral sclerosis. Muscle Nerve 34:702–708

    Article  PubMed  Google Scholar 

  12. Davidoff RA (1990) The pyramidal tract. Neurology 40:332–339

    PubMed  CAS  Google Scholar 

  13. del Aguila MA, Longstreth WT Jr, McGuire V, Koepsell TD, van Belle G (2003) Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology 60:813–819

    Article  PubMed  CAS  Google Scholar 

  14. Dziewas R, Teismann IK, Suntrup S, Schiffbauer H, Steinstraeter O, Warnecke T, Ringelstein EB, Pantev C (2008) Cortical compensation associated with dysphagia caused by selective degeneration of bulbar motor neurons. Hum Brain Mapp (Epub ahead of print)

  15. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  16. Havel P, Braun B, Rau S, Tonn JC, Fesl G, Bruckmann H, Ilmberger J (2006) Reproducibility of activation in four motor paradigms. An fMRI study. J Neurol 253:471–476

    Article  PubMed  Google Scholar 

  17. Haverkamp LJ, Appel V, Appel SH (1995) Natural history of amyotrophic lateral sclerosis in a database population. Validation of a scoring system and a model for survival prediction. Brain 118(Pt 3):707–719

    Article  PubMed  Google Scholar 

  18. Hesselmann V, Sorger B, Lasek K, Guntinas-Lichius O, Krug B, Sturm V, Goebel R, Lackner K (2004) Discriminating the cortical representation sites of tongue and up movement by functional MRI. Brain Topogr 16:159–167

    Article  PubMed  Google Scholar 

  19. Iwanaga K, Hayashi S, Oyake M, Horikawa Y, Hayashi T, Wakabayashi M, Kondo H, Tsuji S, Takahashi H (1997) Neuropathology of sporadic amyotrophic lateral sclerosis of long duration. J Neurol Sci 146:139–143

    Article  PubMed  CAS  Google Scholar 

  20. Kaufmann P, Levy G, Thompson JL, Delbene ML, Battista V, Gordon PH, Rowland LP, Levin B, Mitsumoto H (2005) The ALSFRSr predicts survival time in an ALS clinic population. Neurology 64:38–43

    PubMed  CAS  Google Scholar 

  21. Kew JJ, Brooks DJ, Passingham RE, Rothwell JC, Frackowiak RS, Leigh PN (1994) Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study. Neurology 44:1101–1110

    PubMed  CAS  Google Scholar 

  22. Kew JJ, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS, Brooks DJ (1993) Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 116(Pt 3):655–680

    Article  PubMed  Google Scholar 

  23. Kollewe K, Mauss U, Krampfl K, Petri S, Dengler R, Mohammadi B (2008) ALSFRS-R score and its ratio: a useful predictor for ALS-progression. J Neurol Sci 275:69–73

    Article  PubMed  Google Scholar 

  24. Konrad C, Henningsen H, Bremer J, Mock B, Deppe M, Buchinger C, Turski P, Knecht S, Brooks B (2002) Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res 143:51–56

    Article  PubMed  Google Scholar 

  25. Konrad C, Jansen A, Henningsen H, Sommer J, Turski PA, Brooks BR, Knecht S (2006) Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res 172:361–369

    Article  PubMed  CAS  Google Scholar 

  26. Kubota K, Negishi T, Masegi T (1975) Topological distribution of muscle spindles in the human tongue and its significance in proprioception. Bull Tokyo Med Dent Univ 22:235–242

    PubMed  CAS  Google Scholar 

  27. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/riluzole study group II. Lancet 347:1425–1431

    PubMed  CAS  Google Scholar 

  28. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  PubMed  CAS  Google Scholar 

  29. Louwerse ES, Visser CE, Bossuyt PM, Weverling GJ (1997) Amyotrophic lateral sclerosis: mortality risk during the course of the disease and prognostic factors. The Netherlands ALS Consortium. J Neurol Sci 152 Suppl 1:S10–S17

    Article  PubMed  CAS  Google Scholar 

  30. Magnus T, Beck M, Giess R, Puls I, Naumann M, Toyka KV (2002) Disease progression in amyotrophic lateral sclerosis: predictors of survival. Muscle Nerve 25:709–714

    Article  PubMed  CAS  Google Scholar 

  31. Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS (2004) Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 92:2428–2443

    Article  PubMed  Google Scholar 

  32. Porter R (1966) Lingual mechanoreceptors activated by muscle twitch. J Physiol 183:101–111

    PubMed  CAS  Google Scholar 

  33. Sach M, Winkler G, Glauche V, Liepert J, Heimbach B, Koch MA, Buchel C, Weiller C (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  PubMed  Google Scholar 

  34. Schoenfeld MA, Tempelmann C, Gaul C, Kuhnel GR, Duzel E, Hopf JM, Feistner H, Zierz S, Heinze HJ, Vielhaber S (2005) Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 252:944–952

    Article  PubMed  Google Scholar 

  35. Stambler N, Charatan M, Cedarbaum JM (1998) Prognostic indicators of survival in ALS. ALS CNTF treatment study group. Neurology 50:66–72

    PubMed  CAS  Google Scholar 

  36. Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Jarosz JM, Simmons A (2007) Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 254:1260–1267

    Article  PubMed  Google Scholar 

  37. Stippich C, Blatow M, Durst A, Dreyhaupt J, Sartor K (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237

    Article  PubMed  Google Scholar 

  38. Teismann IK, Steinstraeter O, Warnecke T, Pantev C, Ringelstein EB, Dziewas R (2008) Kortikale Schluckverarbeitung bei ALS Patienten mit rasch progredienter Dysphagie. Akt Neurologie 35:S112–S113

    Google Scholar 

  39. Urban PP, Wicht S, Hopf HC (2001) Sensitivity of transcranial magnetic stimulation of cortico-bulbar versus cortico-spinal tract involvement in amyotrophic lateral sclerosis (ALS). J Neurol 248:850–855

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by grants from the BMBF and the DFG to TFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, B., Kollewe, K., Samii, A. et al. Decreased brain activation to tongue movements in amyotrophic lateral sclerosis with bulbar involvement but not Kennedy syndrome. J Neurol 256, 1263–1269 (2009). https://doi.org/10.1007/s00415-009-5112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5112-8

Keywords

Navigation