Skip to main content

Advertisement

Log in

New insights into the pathology of multiple sclerosis: towards a unified concept?

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Understanding the disease processes underlying multiple sclerosis is crucial to optimise treatment and to develop new therapeutic entities. Our understanding has been dominated by the inflammatory model of multiple sclerosis. More recently, a neurodegenerative model of the disease process has been developed which complements the inflammatory hypothesis in understanding the disease process and suggests a way forward to develop more effective treatments. Histopathological studies have shown that the early disease stage is characterised by acute inflammatory attacks, with T-cell infiltration, gliosis and acute demyelination. Axonal damage is also generally visible at this stage. In late-stage disease, continuing slow axonal damage may remain in the absence of signs of inflammation. Inflammation may not always have a deleterious outcome in multiple sclerosis since the release of growth factors from immune cells may protect neurones against axonal damage or facilitate axonal repair. The processes underlying lesion development appear to be heterogeneous, in some cases being driven by immune-cell mediated gliotoxicity and in others by primary gliopathy. Remyelination occurs to differing degrees in different individuals, and the reasons for this heterogeneity are poorly understood. Finally, the antigens that trigger the autoimmune response have not been characterised and may differ between patients. Candidates include myelin proteins, oligodendrocyte precursor proteins and axonal constituents. These different aspects of pathophysiology need to be brought together in a unified hypothesis of disease, but current knowledge does not permit such a hypothesis to be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barkhof F, Bruck W, De Groot CJ, Bergers E, Hulshof S, Geurts J, Polman CH, van der Valk P (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073-081

    Article  PubMed  Google Scholar 

  2. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458-68

    Article  PubMed  Google Scholar 

  3. Barnett MH, Henderson AP, Prineas JW (2006) The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult Scler 12:121-32

    Article  CAS  PubMed  Google Scholar 

  4. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-27

    CAS  PubMed  Google Scholar 

  5. Bitsch A, Wegener C, da Costa C, Bunkowski S, Reimers CD, Prange HW, Bruck W (1999) Lesion development in Marburg's type of acute multiple sclerosis: from inflammation to demyelination. Mult Scler 5:138-46

    CAS  PubMed  Google Scholar 

  6. Bruck W (2005) Clinical implications of neuropathological findings in multiple sclerosis. J Neurol 252 Suppl 3:III10–III14

    Article  PubMed  Google Scholar 

  7. Bruck W (2005) The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 252(Suppl 5):V3–V9

    Article  PubMed  Google Scholar 

  8. Diemel LT, Copelman CA, Cuzner ML (1998) Macrophages in CNS remyelination: friend or foe? Neurochem Res 23:341-47

    Article  CAS  PubMed  Google Scholar 

  9. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393-99

    Article  PubMed  Google Scholar 

  10. Itoyama Y, Sternberger NH, Webster HD, Quarles RH, Cohen SR, Richardson EP Jr (1980) Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol 7:167-77

    Article  CAS  PubMed  Google Scholar 

  11. Kerschensteiner M, Gallmeier E, Behrens L et al. (1999) Activated human T-cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865-70

    Article  CAS  PubMed  Google Scholar 

  12. Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122:7-6

    Google Scholar 

  13. Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204-12

    Article  CAS  PubMed  Google Scholar 

  14. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202-212

    Article  PubMed  Google Scholar 

  15. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med Aug 15; 202(4):473-77

    Article  CAS  PubMed  Google Scholar 

  16. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707-17

    Article  CAS  PubMed  Google Scholar 

  17. Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicate heterogeneity of pathogenesis. Brain Pathol 6:259-74

    Article  CAS  PubMed  Google Scholar 

  18. Ludwin SK, Johnson ES (1981) Evidence for a “dying-back” gliopathy in demyelinating disease. Ann Neurol 9:301-05

    Article  CAS  PubMed  Google Scholar 

  19. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T-cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49-5

    Article  CAS  PubMed  Google Scholar 

  20. Niehaus A, Shi J, Grzenkowski M et al. (2000) Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann Neurol 48:362-71

    Article  CAS  PubMed  Google Scholar 

  21. O'Connor KC, Appel H, Bregoli L et al. (2005) Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J Immunol 175:1974-982

    PubMed  Google Scholar 

  22. Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 150:389-00

    Article  Google Scholar 

  23. Pittock SJ, McClelland RL, Achenbach SJ et al. (2005) Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating disease. J Neurol Neurosurg Psychiatry 76:1693-697

    Article  CAS  PubMed  Google Scholar 

  24. Prineas JW, Graham JS (1981) Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 10:149-58

    Article  CAS  PubMed  Google Scholar 

  25. Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75-5

    Article  PubMed  Google Scholar 

  26. Stegmuller J, Schneider S, Hellwig A, Garwood J, Trotter J (2002) AN2, the mouse homologue of NG2, is a surface antigen on glial precursor cells implicated in control of cell migration. J Neurocytol 31:497-05

    Article  PubMed  Google Scholar 

  27. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278-85

    Article  CAS  PubMed  Google Scholar 

  28. Traugott U, Reinherz EL, Raine CS (1983) Multiple sclerosis.Distribution of T-cells, T-cell subsets and Ia-positive macrophages in lesions of different ages. J Neuroimmunol 4:201-21

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Da RR, Guo W et al. (2005) Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Immunol 25:254-64

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Brück.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brück, W. New insights into the pathology of multiple sclerosis: towards a unified concept?. J Neurol 254 (Suppl 1), I3–I9 (2007). https://doi.org/10.1007/s00415-007-1002-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-007-1002-0

Key words

Navigation