Skip to main content

Advertisement

Log in

Forensic application of three interstitial pneumonia markers: search for new pneumonia markers in dead bodies

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic cases, detailed identification of pneumonia is important. Our objective was to statistically determine the applicability of three interstitial lung disease (ILD) markers for forensic diagnosis using serum collected from dead bodies with various postmortem intervals (PMIs). We retrospectively analyzed the levels of postmortem serum Krebs von den Lungen-6 (KL-6) and pulmonary surfactant–associated proteins A and D (SP-A and SP-D) using 221 samples obtained during forensic autopsy at our facility from 2019 to 2023. We evaluated the diagnostic efficacy of ILD markers for various pneumonias against the pathological diagnosis, and examined the assessment of the severity of ILD. When comparing the ILD group with bacterial pneumonia (BP) versus the control group, there was a significant increase in KL-6 in the ILD group. When comparing the severe ILD (SILD) group with the mild ILD (MILD) group, there was a significant increase in KL-6 and SP-D in the SILD group. The optimal cutoff values for differentiating SILD were 607.0 U/mL for KL-6, 55.5 ng/mL for SP-A, and 160.0 ng/mL for SP-D, and the sensitivity/specificity (%) of KL-6, SP-A, and SP-D for SILD were 84.1/95.2, 55.6/85.7, and 66.7/74.6, respectively. This is the first study to examine KL-6 in postmortem serum in forensic medicine. By analyzing dead bodies with various PMIs, our results confirmed statistically that postmortem serum KL-6 specifically detects ILD, postmortem serum SP-A has high sensitivity to lung injury, and postmortem serum SP-D is potentially useful in assessing the severity of ILD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ILD:

Interstitial lung disease

KL-6:

Krebs von den Lungen-6

SP-A:

Pulmonary surfactant–associated protein A

SP-D:

Pulmonary surfactant–associated protein D

IIP:

Idiopathic interstitial pneumonia

ARDS:

Acute respiratory distress syndrome

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

COVID-19P:

Coronavirus disease 2019 pneumonia

BP:

Bacterial pneumonia

CRP:

C-reactive protein

PMI:

Postmortem interval

SILD:

Severe interstitial lung disease

MILD:

Mild interstitial lung disease

AP:

Alveolar pneumonia

BrP:

Broncho pneumonia

AsP:

Aspiration pneumonia

PF:

Pulmonary fibrosis

FP:

Fungal pneumonia

OP:

Organized pneumonia

IIP:

Idiopathic interstitial pneumonia

AIDS:

Acquired immune deficiency syndrome

COPD:

Chronic obstructive pulmonary disease

HCC:

Hepatocellular carcinoma

SOP:

Secondary organized pneumonia

ROC:

Receiver-operating characteristic

AUC:

Area under the curve

COP:

Cryptogenic organized pneumonia

References

  1. Antoniou KM, Margaritopoulos GA, Tomassetti S, Bonella F, Costabel U, Polettit V (2014) Interstitial lung disease. Eur Respir Rev 23:40–54. https://doi.org/10.1183/09059180.00009113

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ishikawa N, Hattori H, Yokoyama A, Kohno N (2012) Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir Investig 50(1):3–13. https://doi.org/10.1016/j.resinv.2012.02.001

    Article  PubMed  Google Scholar 

  3. Kohno N, Akiyama M, Kyoizumi S, Hakoda M, Kobuke K, Yamakido M (1988) Detection of soluble tumor-associated antigens in sera and effusions using novel monoclonal antibodies, KL-3 and KL-6, against lung adenocarcinoma. Jpn J Clin Oncol 18(3):203–216. https://doi.org/10.1093/oxfordjournals.jjco.a039239

    Article  CAS  PubMed  Google Scholar 

  4. Kohno N, Awaya Y, Oyama T, Yamakido M, Akiyama M, Inoue Y, Yokoyama A, Hamada H, Fujioka S, Hiwada K (1993) KL-6, a mucin-like glycoprotein, in bronchoalveolar lavage fluid from patients with interstitial lung disease. Am Rev Respir Dis 148(3):637–642. https://doi.org/10.1164/ajrccm/148.3.637

    Article  CAS  PubMed  Google Scholar 

  5. Shigemura M, Konno S, Nasuhara Y, Shijubo N, Shimizu C, Nishimura M (2013) Serum KL-6 concentrations are associated with molecular sizes and efflux behavior of KL-6/MUC1 in healthy subjects. Clin Chim Acta 424:148–152. https://doi.org/10.1016/j.cca.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  6. Ohnishi H, Yokoyama A, Kondo K, Hamada H, Abe M, Nishimura K, Hiwada K, Konno N (2002) Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med 165(3):378–381. https://doi.org/10.1164/ajrccm.165.3.2107134

    Article  PubMed  Google Scholar 

  7. Chiba H, Otsuka M, Takahashi H (2018) Significance of molecular biomarkers in idiopathic pulmonary fibrosis: a mini review. Respir Investig 56(5):384–391. https://doi.org/10.1016/j.resinv.2018.06.001

    Article  PubMed  Google Scholar 

  8. Elhai M, Avouac J, Allanore Y (2020) Circulating lung biomarkers in idiopathic lung fibrosis and interstitial lung diseases associated with connective tissue diseases: where do we stand? Semin Arthritis Rheum 50(3):480–491. https://doi.org/10.1016/j.semarthrit.2020.01.006

    Article  CAS  PubMed  Google Scholar 

  9. Hermans C, Bernard A (1999) Lung epithelium-specific proteins: characteristics and potential applications as markers. Am J Respir Crit Care Med 159(2):646–678

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi H, Kuroki Y, Tanaka H, Saito T, Kurokawa K, Chiba H, Sagawa A, Nagae H, Abe S (2000) Serum levels of surfactant proteins A and D are useful biomarkers for interstitial lung disease in patients with progressive systemic sclerosis. Am J Respir Crit Care Med 162(1):258–263. https://doi.org/10.1164/ajrccm.162.1.9903014

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi H, Fujishima T, Koba H, Murakami S, Kurokawa K, Shibuya Y, Shiratori M, Kuroki Y, Abe S (2000) Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am J Respir Crit Care Med 162(3):1109–1114. https://doi.org/10.1164/ajrccm.162.3.9910080

    Article  CAS  PubMed  Google Scholar 

  12. Bowden DH (1981) Alveolar response to injury. Thorax 36(11):801–804. https://doi.org/10.1136/thx.36.11.801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crisan-Dabija R, Covic A, Brinza C, Popa IV, Burlacu A (2021) Involvement of KL-6 biomarker in interstitial lung disease induced by SARS-CoV-2 infection: a systematic review. Appl Sci 11(8):3482. https://doi.org/10.3390/app11083482

    Article  CAS  Google Scholar 

  14. Di Wu, Tiantian Wu, Liu Q, Yang Z (2020) The SARS-CoV-2 outbreak: what we know. Int J Infect Dis 94:44–48. https://doi.org/10.1016/j.ijid.2020.03.004

    Article  CAS  Google Scholar 

  15. Ghati A, Dam P, Tasdemir D, Kati A, Sellami H, Sezgin GC, Ildiz N, Franco OL, Mandal AK, Ocsoy I (2021) Exogenous pulmonary surfactant: a review focused on adjunctive therapy for severe acute respiratory syndrome coronavirus 2 including SP-A and SP-D as added clinical marker. Curr Opin Colloid Interface Sci 51:101413. https://doi.org/10.1016/j.cocis.2020.101413

    Article  CAS  PubMed  Google Scholar 

  16. Ishida K, Zhu B-L, Li Quan MQ, Fujita MH (2000) Pulmonary surfactant-associated protein A levels in dead cadaveric sera with reference to the cause of death. Forensic Sci Int 109(2):125–133. https://doi.org/10.1016/S0379-0738(99)00228-5

    Article  CAS  PubMed  Google Scholar 

  17. Quan Li, Zhu B-L, Ishikawa T, Michiue T, Zhao D, Yoshida C, Chen J-H, Wang Qi, Komatsu A, Azuma Y, Maeda H (2009) Postmortem serum levels of pulmonary surfactant-associated proteins A and D with regard to the cause of death in medicolegal autopsy. Leg Med 11:S301–S303. https://doi.org/10.1016/j.legalmed.2009.01.011

    Article  Google Scholar 

  18. Ikeda K, Ichihara K, Hashiguchi T, Hidaka Y, Kang Dongchon, Maekawa M, Matsumoto H, Matsushita K, Okubo S, Tsuchiya T, Furuta K, on behalf of The Committee for Standardization, The Japanese Society of Laboratory Medicine (2015) Evaluation of the short-term stability of specimens for clinical laboratory testing. Biopreserv Biobank 13(2):135–143. https://doi.org/10.1089/bio.2014.0072

    Article  PubMed  Google Scholar 

  19. Ode H, Nakata Y, Nagashima M, Hayashi M, Yamazaki T, Asakura H, Suzuki J, Kubota M, Matsuoka K, Matsuda M, Mori M, Sugimot A, Imahashi M, Yokomaku Y, Sadamasu K, Iwatani Y (2022) Molecular epidemiological features of SARS-CoV-2 in Japan, 2020–1. Virus Evol 8(1):veac034. https://doi.org/10.1093/ve/veac034

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hirotsu Y, Maejima M, Shibusawa M, Kakizawa Y, Miyashita Y, Omata M (2022) SARS-CoV-2 Omicron sublineage BA.2 replaces BA.1.1: genomic surveillance in Japan from September 2021 to March 2022. J Infect 85(2):174–211. https://doi.org/10.1016/j.jinf.2022.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doyle IR, Nicholas TE, Bersten AD (1995) Serum surfactant protein-A levels in patients with acute cardiogenic pulmonary edema and adult respiratory distress syndrome. Am J Respir Crit Care Med 152(1):307–317. https://doi.org/10.1164/ajrccm.152.1.7599839

    Article  CAS  PubMed  Google Scholar 

  22. Netsu S, Shishido T, Arimoto T, Takahashi H, Miyashita T, Miyamoto T, Nitone J, Kubota I (2010) Serum surfactant protein D reflects pulmonary congestion in patients with chronic heart failure. J Cardiac Fail 16(9):S169. https://doi.org/10.1016/j.cardfail.2010.07.200

    Article  Google Scholar 

  23. Cheng Ivan W, Ware Lorraine B, Greene Kelly E, Nuckton Thomas J, Eisner Mark D, Matthay Michael A (2003) Prognostic value of surfactant proteins A and D in patients with acute lung injury*. Soc Crit Care Med 31(1):20–27

    Article  CAS  Google Scholar 

  24. Chiba H, Takahashi H (2016) Specific serum markers of IPF. Idiopathic Pulmonary Fibrosis. Springer, Tokyo, pp 61–76. https://doi.org/10.1007/978-4-431-55582-7_5

    Chapter  Google Scholar 

  25. Palmiere C, Mangin P (2012) Postmortem chemistry update part II. Int J Legal Med 126:199–215. https://doi.org/10.1007/s00414-011-0614-1

    Article  PubMed  Google Scholar 

  26. Cordier J-F (2006) Cryptogenic organising pneumonia. Eur Respir J 28:422–446. https://doi.org/10.1183/09031936.06.00013505

    Article  PubMed  Google Scholar 

  27. Hara Y, Kano S, Fujikura Y, Kawano S, Kanzaki Y, Misawa K, Shinkai M, Kawana A (2014) Clinical significance of serum KL-6 levels in organizing pneumonia proven by lung biopsy. Japan Soc Bronchol 36(4):348–52. https://doi.org/10.18907/jjsre.36.4_348

    Article  Google Scholar 

  28. Okada F, Ando Y, Honda K, Tanoue S, Matsumoto S, Mori H (2009) Comparison of pulmonary CT findings and serum KL-6 levels in patients with cryptogenic organizing pneumonia. Br J Radiol 82(975):212–218. https://doi.org/10.1259/bjr/72775434

    Article  CAS  PubMed  Google Scholar 

  29. Yamagishi T, Kodaka N, Watanabe K, Nakano C, Oshio T, Niitsuma K, Shimada N, Matsuse H (2020) A retrospective clinical research of relapsed organizing pneumonia. Ann Thorac Med 15(1):15–20. https://doi.org/10.4103/atm.ATM_311_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Donaldson AE, Lamont IL (2014) Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci 46(1):8–26. https://doi.org/10.1080/00450618.2013.784356

    Article  Google Scholar 

  31. Butzbach DM (2010) The influence of putrefaction and sample storage on post-mortem toxicology results. Forensic Sci Med Pathol 6:35–45. https://doi.org/10.1007/s12024-009-9130-8

    Article  PubMed  Google Scholar 

  32. Chen J-H, Inamori-Kawamoto O, Michiue T, Ikeda S, Ishikawa T, Maeda H (2015) Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: a reassessment with special regard to postmortem interval. Leg Med 17(5):343–350. https://doi.org/10.1016/j.legalmed.2015.03.007

    Article  CAS  Google Scholar 

  33. Lorente JA, Lorente M, Villanueva E (1992) Postmortem stability of lung surfactant phospholipids. J Forensic Sci 37(5):1341–1345. https://doi.org/10.1520/JFS13322J

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KO, KH, and CM performed the measurements. GI, H Iwase, H Inoue, AM, NI, TS, and DY reviewed this manuscript. GI supervised the study.

Corresponding author

Correspondence to Keisuke Okaba.

Ethics declarations

Ethical approval

This study was conducted with the approval of the Human Research Ethics Committee of the University of the International University of Health and Welfare, School of Medicine (ethics approval number: 19-Im-019).

Consent to participate

Because all the subjects of this study are the dead bodies, it is impossible for us to obtain the informed consent from them. However, we are making an effort to obtain the informed consent of the families and/or other interested parties of the dead bodies through an opt-out method via leaflets and our website.

Research involving human participants and/or animals

This study was performed with human dead bodies. This manuscript does not contain any studies with (living) human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okaba, K., Inokuchi, G., Horioka, K. et al. Forensic application of three interstitial pneumonia markers: search for new pneumonia markers in dead bodies. Int J Legal Med (2024). https://doi.org/10.1007/s00414-024-03187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00414-024-03187-2

Keywords

Navigation