Skip to main content

Advertisement

Log in

The influence of putrefaction and sample storage on post-mortem toxicology results

  • Review
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

There are numerous biochemical and biological processes that occur after death that may have a significant influence on post-mortem drug concentrations. These processes may render the quantification of particular drugs unreliable, or even result in drugs being undetectable in some instances, despite the use of several methods. Problems may occur with changes in the drug concentration via bacterial degradation, residual tissue enzymatic activity, or via post-mortem redistribution from tissues of a higher to a lower concentration. Many analytical techniques can suffer from interferences due to co-extracted putrefactive compounds that mask or alter the way a drug is detected, depending on the analytical technique utilised. The following paper reviews problems associated with post-mortem drug concentration changes, and the significance of microbial influences during the post-mortem interval and sample storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Madea B. Is there recent progess in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int. 2005;151:139–49.

    Article  CAS  PubMed  Google Scholar 

  2. Vass AA, Barshick S-A, Sega G, Caton J, Skeen JT, JC Love, et al. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci. 2002;47(3):542–53.

    CAS  PubMed  Google Scholar 

  3. Evans WED. The chemistry of death. Springfield: Charles C Thomas; 1963.

    Google Scholar 

  4. Yarema MC, Becker CE. Key concepts in postmortem drug redistribution. Clin Toxicol. 2005;43:235–41.

    CAS  Google Scholar 

  5. Robertson MD, Drummer OH. Postmortem drug metabolism by bacteria. J Forensic Sci. 1995;40(3):382–6.

    CAS  PubMed  Google Scholar 

  6. Pounder DJ, Jones GR. Post-mortem drug redistribution—a toxicological nightmare. Forensic Sci Int. 1990;45:253–63.

    Article  CAS  PubMed  Google Scholar 

  7. Paterson S. Drugs and decomposition. Med Sci Law. 1993;33(2):103–9.

    CAS  PubMed  Google Scholar 

  8. Haglund WD, Sorg MH. Forensic taphonomy: the postmortem fate of human remains. Boca Raton: CRC Press LLC; 1997.

    Google Scholar 

  9. Spitz WU. Spitz and Fisher’s medicolegal investigation of death. 3rd ed. Springfield: Charles C Thomas; 1993.

    Google Scholar 

  10. Bugg T. An introduction to enzyme and coenzyme chemistry. Oxford: Blackwell Science Ltd; 1997.

    Google Scholar 

  11. Yamazaki M, Wakasugi C. Postmortem changes in drug-metabolizing enzymes of rat liver microsome. Forensic Sci Int. 1994;67:155–68.

    Article  CAS  PubMed  Google Scholar 

  12. Micozzi MS. Postmortem change in human and animal remains: a systematic approach. Springfield: Charles C Thomas; 1991.

    Google Scholar 

  13. Morris JA, Harrison LM, Partridge SM. Practical and theoretical aspects of postmortem bacteriology. Curr Diagn Pathol. 2007;13:65–74.

    Article  Google Scholar 

  14. Knight B, Saukko P. Knight’s forensic pathology. 3rd ed. London: Arnold Publishers; 2004.

    Google Scholar 

  15. Morris JA, Harrison LM, Partridge SM. Postmortem bacteriology: a re-evaluation. J Clin Pathol. 2006;59:1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tsokos M, Puschel K. Postmortem bacteriology in forensic pathology: diagnostic value and interpretation. Legal Med. 2001;3:15–22.

    Article  CAS  PubMed  Google Scholar 

  17. Dix J, Calaluce R, Ernst MF. Guide to forensic pathology. Boca Raton: CRC Press; 1998.

    Google Scholar 

  18. Skopp G. Preanalytical aspects in postmortem toxicology. Forensic Sci Int. 2004;142:75–100.

    Article  CAS  PubMed  Google Scholar 

  19. Dick GL, Stone HM. Alcohol loss arising from microbial contamination of drivers’ blood specimens. Forensic Sci Int. 1987;34:17–27.

    Article  CAS  PubMed  Google Scholar 

  20. Batziris HP, McIntyre IM, Drummer OH. The effect of sulfur-metabolising bacteria on sulfur-containing psychotropic drugs. Int Biodeterior Biodegradation. 1999;44:111–6.

    Article  CAS  Google Scholar 

  21. Rose GW, Hockett RN. The microbiologic evaluation and enumeration of postmortem specimens from human remains. Health Lab Sci. 1971;8(2):75–8.

    CAS  PubMed  Google Scholar 

  22. Robertson MD, Drummer OH. Stability of nitrobenzodiazepines in postmortem blood. J Forensic Sci. 1998;43(1):5–8.

    CAS  PubMed  Google Scholar 

  23. Robertson MD, Drummer OH. Postmortem distribution and redistribution of nitrobenzodiazepines in man. J Forensic Sci. 1998;43(1):9–13.

    CAS  PubMed  Google Scholar 

  24. Robertson MD (1996) The effect of the post-mortem interval on the concentrations of nitrobenzodiazepines. Doctor of Philosophy Thesis, Monash University.

  25. Anderson WH, Prouty RW. Postmortem redistribution of drugs. In: Baselt RC, editor. Advances in analytical toxicology VII. Chigaco: Year Book Medical Publishers; 1989. p. 70–102.

    Google Scholar 

  26. Rodda KE, Drummer OH. The redistribution of selected psychiatric drugs in post-mortem cases. Forensic Sci Int. 2006;164:235–9.

    Article  CAS  PubMed  Google Scholar 

  27. Drummer OH. Post-mortem toxicology. Forensic Sci Int. 2007;165:199–203.

    Article  CAS  PubMed  Google Scholar 

  28. Bertol E, Trignano C, Di Milia MG, Di Padua M, Mari F. Cocaine-related deaths: an enigma still under investigation. Forensic Sci Int. 2008;176(2–3):121–3.

    Article  CAS  PubMed  Google Scholar 

  29. Logan BK, Smirnow D, Gullberg RG. Lack of predictable site-dependent differences and time-dependent changes in postmortem concentrations of cocaine, benzoylecgonine, and cocaethylene in humans. J Anal Toxicol. 1997;21:23–31.

    CAS  PubMed  Google Scholar 

  30. Prouty RW, Anderson WH. The forensic science implications of site and temporal influences on postmortem blood-drug concentrations. J Forensic Sci. 1990;35(2):243–70.

    CAS  PubMed  Google Scholar 

  31. Yonemitsu K, Pounder DJ. Postmortem changes in blood tranylcypromine concentration: competing redistribution and degradation effects. Forensic Sci Int. 1993;59:177–84.

    Article  CAS  PubMed  Google Scholar 

  32. Drummer OH. Postmortem toxicology of drugs of abuse. Forensic Sci Int. 2004;142(2–3):101–13.

    Article  CAS  PubMed  Google Scholar 

  33. Curry AS, Sunshine I. The liver:blood ratio in cases of barbiturate poisoning. Toxicol Appl Pharmacol. 1960;2:602–6.

    Article  CAS  Google Scholar 

  34. Miyaishi S, Moriya F. Immunoassays, forensic applications. In: Payne-James J, editor. Encyclopedia of forensic and legal medicine. 1st ed. Oxford: Elsevier Academic Press; 2005. p. 73–9.

    Google Scholar 

  35. Lokan RJ (1977) The forensic significance of putrefactive bases. Masters Thesis, University of Strathclyde.

  36. Goeringer KE, Raymon L, Christian GD, Logan BK. Postmortem forensic toxicology of selective serotonin reuptake inhibitors: a review of pharmacology and report of 168 cases. J Forensic Sci. 2000;45(3):633–48.

    CAS  PubMed  Google Scholar 

  37. Saar E, Gerostamoulos D, Drummer OH. Comparison of extraction efficiencies and LC-MS-MS matrix effects using LLE and SPE methods for 19 antipsychotics in human blood. Anal Bioanal Chem. 2009;393(2):727–34.

    Article  CAS  PubMed  Google Scholar 

  38. Moriya F, Hashimoto Y. Distribution of free and conjugated morphine in body fluids and tissues in a fatal heroin overdose: is conjugated morphine stable in postmortem specimens? J Forensic Sci. 1997;42(4):736–40.

    CAS  PubMed  Google Scholar 

  39. Sawyer WR, Forney RB. Postmortem disposition of morphine in rats. Forensic Sci Int. 1988;38(3–4):259–73.

    Article  CAS  PubMed  Google Scholar 

  40. Spiehler V, Brown R. Unconjugated morphine in blood by radioimmunoassay and gas chromatography/mass spectrometry. J Forensic Sci. 1987;32(4):906–16.

    CAS  PubMed  Google Scholar 

  41. Mather LE. Opioids: a pharmacologist’s delight! Clin Exp Pharmacol Physiol. 1995;22:833–6.

    Article  CAS  PubMed  Google Scholar 

  42. Rop PP, Grimaldi F, Burle J, De Saint Leger MN, Viala A. Determination of 6-monoacetylmorphine and morphine in plasma, whole blood and urine using high-performance liquid chromatography with electrochemical detection. J Chromatogr B. 1994;661:245–53.

    Article  CAS  Google Scholar 

  43. Skopp G, Potsch L, Klingmann A, Mattern R. Stability of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in fresh blood and plasma and postmortem blood samples. J Anal Toxicol. 2001;25:2–7.

    CAS  PubMed  Google Scholar 

  44. Stevens HM. The stability of some drugs and poisons in putrefying human liver tissues. J Forensic Sci Soc. 1984;24:577–89.

    Article  CAS  PubMed  Google Scholar 

  45. Jimenez C, de la Torre R, Ventura M, Segura J, Ventura R. Stability studies of amphetamine and ephedrine derivatives in urine. J Chromatogr B. 2006;843:84–93.

    Article  CAS  Google Scholar 

  46. Nagata T, Kimura K, Hara K, Kudo K. Methamphetamine and amphetamine concentrations in postmortem rabbit tissues. Forensic Sci Int. 1990;48:39–47.

    Article  CAS  PubMed  Google Scholar 

  47. Moriya F, Hashimoto Y. Postmortem stability of cocaine and cocaethylene in blood and tissues of humans and rabbits. J Forensic Sci. 1996;41(4):612–6.

    CAS  PubMed  Google Scholar 

  48. Johansen SS, Bhatia HM. Quantitative analysis of cocaine and its metabolites in whole blood and urine by high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B. 2007;852:338–44.

    Article  CAS  Google Scholar 

  49. Bouis P, Taccard G, Boelsterli UA. Determination of cocaine and norcocaine in plasma and cell cultures using high-performance liquid chromatography. J Chromatogr. 1990;526:447–59.

    Article  CAS  PubMed  Google Scholar 

  50. Skopp G, Klingman A, Potsch L, Mattern R. In vitro stability of cocaine in whole blood and plasma including ecgonine as a target analyte. Ther Drug Monit. 2001;23:174–81.

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki O, Watanabe K. Drugs and poisons in humans: a handbook of practical analysis. Basel: Birkhauser; 2005.

    Google Scholar 

  52. Levine BS, Blanke RV, Valentour JC. Postmortem stability of benzodiazepines in blood and tissues. J Forensic Sci. 1983;28(1):102–15.

    CAS  PubMed  Google Scholar 

  53. Entwistle N, Owen P, Patterson DA, Jones LV. The occurrence of chlordiazepoxide degradation products in sudden deaths associated with chlordiazepoxide overdosage. J Forensic Sci Soc. 1986;26:45–54.

    Article  CAS  PubMed  Google Scholar 

  54. Al-Hadidi KA, Oliver JS. Stability of temazepam in blood. J Forensic Sci Soc. 1995;35(2):105–8.

    CAS  Google Scholar 

  55. Skopp G, Potsch L, Konig I, Mattern R. A preliminary study on the stability of benzodiazepines in blood and plasma stored at 4C. Int J Legal Med. 1998;111:1–5.

    Article  CAS  PubMed  Google Scholar 

  56. Mahjoub AE. Stability of benzodiazepines in whole blood samples stored at varying temperatures. J Pharm Biomed Anal. 2000;23(6):1057–63.

    Article  PubMed  Google Scholar 

  57. Pounder DJ, Hartley AK, Watmough PJ. Postmortem redistribution and degradation of dothiepin. Am J Forensic Med Pathol. 1994;15(3):231–5.

    Article  CAS  PubMed  Google Scholar 

  58. Caddy B, Stead AH. Three cases of poisoning involving the drug phenelzine. J Forensic Sci Soc. 1978;18:207–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kwon J-W, Armbrust KL. Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem. 2006;25(10):2561–8.

    Article  CAS  PubMed  Google Scholar 

  60. Sykutera M, Pufal E, Sliwka K. The influence of temperature and time of storage on the stability of fluoxetine and biological material. Z Zagadnien Nauk Sadowych. 2002;50:5–16.

    CAS  Google Scholar 

  61. Binsumait IA, Hadidi KA, Abu-Al Raghib S. Stability of fluoxetine in stored plasma, aqueous and methanolic solutions determined by HPLC with UV detection. Die Pharm. 2001;56(4):311–3.

    CAS  Google Scholar 

  62. Asafu-Adjaye EB, Faustino PJ, Tawakkul MA, Anderson LW, Yu LX, Kwon H, et al. Validation and application of a stability-indicating HPLC method for the in vitro determination of gastric and intestinal stability of venlafaxine. J Pharm Biomed Anal. 2007;43:1854–9.

    Article  CAS  PubMed  Google Scholar 

  63. Coutselinis A, Dimopoulos G, Dritsas C. Fatal intoxication with chlorpromazine with special regard to the influence of putrefaction on its toxicological analysis. Forensic Sci. 1974;4(2):191–4.

    Article  CAS  PubMed  Google Scholar 

  64. Catlow JT, Barton RD, Clemens M, Gillespie TA, Goodwin M, Swanson SP. Analysis of olanzapine in human plasma utilizing reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr B. 1995;668:85–90.

    Article  CAS  Google Scholar 

  65. Kostakis C, Kenneally M, Felgate P, Walker GS. Difficulties encountered in the analysis of olanzapine from spiked psot-mortem blood samples. Melbourne: TIAFT; 2003.

    Google Scholar 

  66. van der Zwaal EM, Luijendijk MCM, Adan RAH, la Fleur SE. Olanzapine-induced weight gain: Chronic infusion using osmotic minipumps does not result in stable plasma levels due to degradation of olanzapine in solution. Eur J Pharmacol. 2008;585:130–6.

    Article  PubMed  CAS  Google Scholar 

  67. Takayasu T, Ohshima T, Tanaka N, Maeda H, Kondo T, Nishigami J, et al. Postmortem degradation of administered ethanol-d6 and production of endogenous ethanol: experimental studies using rats and rabbits. Forensic Sci Int. 1995;76:129–40.

    Article  CAS  PubMed  Google Scholar 

  68. Hoiseth G, Karinen R, Chrisophersen AS, Olsen L, Normann PT, Morland J. A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol. Forensic Sci Int. 2007;165:41–5.

    Article  CAS  PubMed  Google Scholar 

  69. Canfield D, Brink J, Johnson R, Lewis R, Dubowski K. Clarification of ethanol-positive case using urine serotonin metabolite ratio. J Anal Toxicol. 2007;31:592–5.

    CAS  PubMed  Google Scholar 

  70. Hoiseth G, Karinen R, Johnson L, Normann PT, Christopherson AS, Morland J. Disappearance of ethyl glucuronide during heavy putrefaction. Forensic Sci Int. 2008;176(2–3):147–51.

    Article  PubMed  CAS  Google Scholar 

  71. Helander A, Olssen I, Dahl H. Postcollection synthesis of ethyl glucuronide by bacteria in urine may cause false identification of alcohol consumption. Clin Chem. 2007;53(10):1855–7.

    Article  CAS  PubMed  Google Scholar 

  72. Halter CC, Laengin A, Al-Ahmad A, Wurst FM, Weinmann W, Keummerer K. Assessment of the stability of the ethanol metabolite ethyl sulfate in standardized degradation tests. Forensic Sci Int. 2009;186:52–5.

    Article  CAS  PubMed  Google Scholar 

  73. Elliot S, Burgess V. Investigative implications of the instability and metabolism of mebeverine. J Anal Toxicol. 2006;30:91–7.

    Google Scholar 

  74. Koves EM, Lawrence K, Mayer JM. Stability of diltiazem in whole blood: forensic implications. J Forensic Sci. 1998;43(3):587–97.

    CAS  PubMed  Google Scholar 

  75. Couper FJ, Drummer OH. Postmortem stability and interpretation of b2-agonist concentrations. J Forensic Sci. 1999;44(3):523–6.

    CAS  PubMed  Google Scholar 

  76. Ramagiri S, Kosanam H, Sai Prakash PK. Stability study of propoxur (baygon) in whole blood and urine stored at varying temperature conditions. J Anal Toxicol. 2006;30:313–6.

    CAS  PubMed  Google Scholar 

  77. Holmgren P, Druid H, Holmgren A, Ahlner J. Stability of drugs in stored postmortem femoral blood and vitreous humor. J Forensic Sci. 2004;49(4):6.

    Article  Google Scholar 

  78. Moody DE, Monti KM, Spanbauer AC. Long-term stability of abused drugs and antiabuse chemotherapeutical agents stored at −20C. J Anal Toxicol. 1999;23:535–40.

    CAS  PubMed  Google Scholar 

  79. Eenoo PV, Lootens L, Spaerkeer A, Van Thuyne W, Deventer K, Delbeke FT. Results of stability studies with doping agents in urine. J Anal Toxicol. 2007;31:543–8.

    PubMed  Google Scholar 

  80. Lokan RJ, James RA, Dymock RB. Apparent post-mortem production of high levels of cyanide in blood. J Forensic Sci Soc. 1987;27:253–9.

    Article  CAS  PubMed  Google Scholar 

  81. Elliot SP, Lowe P, Symonds A. The possible influence of micro-organisms and putrefaction in the production of GHB in post-mortem biological fluid. Forensic Sci Int. 2004;139(2–3):183–90.

    Article  CAS  Google Scholar 

  82. Baselt RC. Disposition of toxic drugs and chemicals in man. 6th ed. Foster City: Biomedical Publications; 2002.

    Google Scholar 

  83. Berankova K, Mutnanska K, Balikova M. Gamma-hydroxybutyric acid stability and formation in blood and urine. Forensic Sci Int. 2006;161(2–3):158–62.

    Article  CAS  PubMed  Google Scholar 

  84. Hardman JK, Stadtman TC. Metabolism of g-amino acids: fermentation of g-aminobutyric acid by Clostridium aminobutyricum. J Bacteriol. 1960;79:544–8.

    CAS  PubMed  Google Scholar 

  85. Levine BS, Blanke RV, Valentour JC. Postmortem stability of barbiturates in blood and tissues. J Forensic Sci. 1984;29(1):131–8.

    CAS  PubMed  Google Scholar 

  86. Boumba VA, Ziavrou KS, Vougiouklakis T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci Int. 2008;174:133–51.

    Article  CAS  PubMed  Google Scholar 

  87. Zaitsu K, Miki A, Katagi M, Tsuchihashi H. Long-term stability of various drugs and metabolites in urine, and preventative measures against their decomposition with special attention to filtration sterilization. Forensic Sci Int. 2008;174(2–3):189–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank her research supervisors for assistance with editing this manuscript: Prof. Roger Byard, Prof. Hilton Kobus, Mr. Peter Stockham, Mr. Bob Lokan, Mr. Noel Sims and Ass. Prof. Stewart Walker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle M. Butzbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butzbach, D.M. The influence of putrefaction and sample storage on post-mortem toxicology results. Forensic Sci Med Pathol 6, 35–45 (2010). https://doi.org/10.1007/s12024-009-9130-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-009-9130-8

Keywords

Navigation