Skip to main content

Advertisement

Log in

Bone age assessment based on different MRI modalities of the proximal humerus epiphysis: the comparisons of T1WI, T2WI, and PDWI

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Bone age assessment (BAA) is crucial in various fields, including legal proceedings, athletic competitions, and clinical medicine. However, the use of X-ray methods for age estimation without medical indication is subject to ethical debate, especially in forensic and athletic fields. The application of magnetic resonance imaging (MRI) with non-ionizing radiation can overcome this limitation in BAA. This study aimed to compare the application value of several MRI modalities of proximal humeral in BAA. A total of 468 patients with shoulder MRIs were retrospectively collected from a Chinese Han population aged 12–30 years (259 males and 209 females) for training and testing, including T1 weighted MRI (T1WI), T2 weighted MRI (T2WI), and Proton density weighted MRI (PDWI). Optimal regression models were established for age estimation, yielding mean absolute error (MAE) values below 2.0 years. The MAE values of T1WI were the lowest, with 1.700 years in males and 1.798 years in females. The area under the curve (AUC) and accuracy values of different MRI modalities of 16-year and 18-year thresholds were all around 0.9. For the 18-year threshold, T1WI outperformed T2WI and PDWI. In conclusion, the three MRI modalities of the proximal humerus can serve as reliable indicators for age assessment, while the T1WI performed better in age assessment and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Lopatin O, Barszcz M, Bolechala F, Wozniak KJ (2023) The fusion of ossification centers – A comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Leg Med 61:102185. https://doi.org/10.1016/j.legalmed.2022.102185

    Article  Google Scholar 

  2. Guo Y, Olze A, Ottow C et al (2015) Dental age estimation in living individuals using 3.0 T MRI of lower third molars. Int J Legal Med 129:1265–1270. https://doi.org/10.1007/s00414-015-1238-7

    Article  PubMed  Google Scholar 

  3. Widek T, Genet P, Merkens H et al (2019) Dental age estimation: The chronology of mineralization and eruption of male third molars with 3T MRI. Forensic Sci Int 297:228–235. https://doi.org/10.1016/j.forsciint.2019.02.019

    Article  PubMed  Google Scholar 

  4. Baumann P, Widek T, Merkens H et al (2015) Dental age estimation of living persons: Comparison of MRI with OPG. Forensic Sci Int 253:76–80. https://doi.org/10.1016/j.forsciint.2015.06.001

    Article  PubMed  Google Scholar 

  5. De Tobel J, Parmentier GIL, Phlypo I et al (2019) Magnetic resonance imaging of third molars in forensic age estimation: comparison of the Ghent and Graz protocols focusing on apical closure. Int J Legal Med 133:583–592. https://doi.org/10.1007/s00414-018-1905-6

    Article  PubMed  Google Scholar 

  6. Tomei E, Sartori A, Nissman D et al (2014) Value of MRI of the hand and the wrist in evaluation of bone age: preliminary results. J Magn Reson Imaging 39:1198–1205. https://doi.org/10.1002/jmri.24286

    Article  PubMed  Google Scholar 

  7. Serin J, Rerolle C, Pucheux J et al (2016) Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment. Int J Legal Med 130:1121–1128. https://doi.org/10.1007/s00414-016-1362-z

    Article  PubMed  Google Scholar 

  8. Widek T, Genet P, Ehammer T, Schwark T, Urschler M, Scheurer E (2021) Bone age estimation with the Greulich-Pyle atlas using 3T MR images of hand and wrist. Forensic Sci Int 319:110654. https://doi.org/10.1016/j.forsciint.2020.110654

    Article  PubMed  Google Scholar 

  9. Diete V, Wabitsch M, Denzer C et al (2021) Applicability of Magnetic Resonance Imaging for Bone Age Estimation in the Context of Medical Issues. Rofo 193:692–700. https://doi.org/10.1055/a-1313-7664

    Article  PubMed  Google Scholar 

  10. Ekizoglu O, Er A, Bozdag M, Moghaddam N, Grabherr S (2021) Forensic age estimation based on fast spin-echo proton density (FSE PD)-weighted MRI of the distal radial epiphysis. Int J Legal Med 135:1611–1616. https://doi.org/10.1007/s00414-021-02505-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ottow C, Schmidt S, Heindel W et al (2022) Forensic age assessment by 3.0 T MRI of the wrist: adaption of the Vieth classification. Eur Radiol 32:7956–7964. https://doi.org/10.1007/s00330-022-08819-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan F, Zhang K, Peng Z, Cui JH, Hu N, Deng ZH (2016) Forensic age estimation of living persons from the knee: Comparison of MRI with radiographs. Forensic Sci Int 268:145–150. https://doi.org/10.1016/j.forsciint.2016.10.002

    Article  PubMed  Google Scholar 

  13. Ekizoglu O, Er A, Bozdag M et al (2021) Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence. Int J Legal Med 135:631–637. https://doi.org/10.1007/s00414-020-02402-0

    Article  PubMed  Google Scholar 

  14. Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique. Forensic Sci Int 260(102):e1–e7. https://doi.org/10.1016/j.forsciint.2015.12.006

    Article  Google Scholar 

  15. Deng XD, Lu T, Liu GF et al (2022) Forensic age prediction and age classification for critical age thresholds via 3.0T magnetic resonance imaging of the knee in the Chinese Han population. Int J Legal Med 136:841–852. https://doi.org/10.1007/s00414-022-02797-y

    Article  PubMed  Google Scholar 

  16. Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol 27:5041–5048. https://doi.org/10.1007/s00330-017-4880-2

    Article  PubMed  Google Scholar 

  17. Has B, Gurses MS, Altinsoy HB (2023) Evaluation of distal femoral and proximal tibial epiphyseal plate in bone age estimation with 3.0T MRI: a comparison of current methods. Br J Radiol 96:20220561. https://doi.org/10.1259/bjr.20220561

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wittschieber D, Chitavishvili N, Papageorgiou I, Malich A, Mall G, Mentzel H-J (2022) Magnetic resonance imaging of the proximal tibial epiphysis is suitable for statements as to the question of majority: a validation study in forensic age diagnostics. Int J Legal Med 136:777–784. https://doi.org/10.1007/s00414-021-02766-x

    Article  PubMed  Google Scholar 

  19. Chitavishvili N, Papageorgiou I, Malich A et al (2023) The distal femoral epiphysis in forensic age diagnostics: studies on the evaluation of the ossification process by means of T1- and PD/T2-weighted magnetic resonance imaging. Int J Legal Med 137:427–435. https://doi.org/10.1007/s00414-022-02927-6

    Article  PubMed  Google Scholar 

  20. Uygun B, Kaya K, Kose S, Ekizoglu O, Hilal A (2021) Applicability of Magnetic Resonance Imaging of the Knee in Forensic Age Estimation. Am J Forensic Med Pathol 42:147–154. https://doi.org/10.1097/PAF.0000000000000634

    Article  PubMed  Google Scholar 

  21. Daghighi MH, Pourisa M, Javanpour-Heravi H et al (2021) Application of knee MRI in forensic age estimation: A retrospective cohort. Radiography (Lond) 27:108–114. https://doi.org/10.1016/j.radi.2020.06.019

    Article  CAS  PubMed  Google Scholar 

  22. El-Din EAA, Mostafa HES, Tantawy EF, El-Shafei DA (2019) Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? Forensic Sci Med Pathol 15:352–361. https://doi.org/10.1007/s12024-019-00116-3

    Article  PubMed  Google Scholar 

  23. Cekdemir YE, Mutlu U, Karaman G, Guleryuz H (2021) Evaluation of the Ossification Stage of Proximal Humeral Epiphysis by 1.5-T Magnetic Resonance Imaging for Determination of Skeletal Age. Am J Forensic Med Pathol 42:36–41. https://doi.org/10.1097/PAF.0000000000000636

    Article  PubMed  Google Scholar 

  24. Altinsoy HB, Gurses MS, Bogan M, Unlu NE (2020) Applicability of 30 T MRI images in the estimation of full age based on shoulder joint ossification: Single-centre study. Leg Med (Tokyo) 47:101767. https://doi.org/10.1016/j.legalmed.2020.101767

    Article  PubMed  Google Scholar 

  25. Ekizoglu O, Inci E, Ors S et al (2019) Applicability of T1-weighted MRI in the assessment of forensic age based on the epiphyseal closure of the humeral head. Int J Legal Med 133:241–248. https://doi.org/10.1007/s00414-018-1868-7

    Article  PubMed  Google Scholar 

  26. Lu T, Qiu LR, Ren B, Shi L, Fan F, Deng ZH (2021) Forensic age estimation based on magnetic resonance imaging of the proximal humeral epiphysis in Chinese living individuals. Int J Legal Med 135:2437–2446. https://doi.org/10.1007/s00414-021-02653-5

    Article  PubMed  Google Scholar 

  27. Altinsoy HB, Gurses MS, Alatas O (2021) Evaluation of proximal humeral epiphysis ossification in 3.0 T MR images according to the Dedouit staging method: Is it be used for age of majority? J Forensic Legal Med 77:102095. https://doi.org/10.1016/j.jflm.2020.102095

    Article  Google Scholar 

  28. Ekizoglu O, Inci E, Ors S et al (2019) Forensic age diagnostics by magnetic resonance imaging of the proximal humeral epiphysis. Int J Legal Med 133:249–256. https://doi.org/10.1007/s00414-018-1952-z

    Article  PubMed  Google Scholar 

  29. Lu T, Shi L, Zhan MJ et al (2020) Age estimation based on magnetic resonance imaging of the ankle joint in a modern Chinese Han population. Int J Legal Med 134:1843–1852. https://doi.org/10.1007/s00414-020-02364-3

    Article  PubMed  Google Scholar 

  30. Gurses MS, Has B, Altinsoy HB, Suzen HS (2023) Evaluation of distal tibial epiphysis and calcaneal epiphysis according to the Vieth method in 3.0 T magnetic resonance images: a pilot study. Int J Legal Med 137:1181–1191. https://doi.org/10.1007/s00414-023-03010-4

    Article  PubMed  Google Scholar 

  31. Saint-Martin P, Rerolle C, Dedouit F et al (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127:1023–1030. https://doi.org/10.1007/s00414-013-0844-5

    Article  PubMed  Google Scholar 

  32. Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Bilgili MG (2015) Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 129:825–831. https://doi.org/10.1007/s00414-015-1187-1

    Article  PubMed  Google Scholar 

  33. Widek T, De Tobel J, Ehammer T, Genet P (2023) Forensic age estimation in males by MRI based on the medial epiphysis of the clavicle. Int J Legal Med 137:679–689. https://doi.org/10.1007/s00414-022-02924-9

    Article  PubMed  Google Scholar 

  34. Tangmose S, Jensen KE, Villa C, Lynnerup N (2014) Forensic age estimation from the clavicle using 1.0T MRI–preliminary results. Forensic Sci Int 234:7–12. https://doi.org/10.1016/j.forsciint.2013.10.027

    Article  PubMed  Google Scholar 

  35. De Tobel J, van Wijk M, Alberink I et al (2020) The influence of motion artefacts on magnetic resonance imaging of the clavicles for age estimation. Int J Legal Med 134:753–768. https://doi.org/10.1007/s00414-019-02230-x

    Article  PubMed  Google Scholar 

  36. Schmidt S, Ottow C, Pfeiffer H et al (2017) Magnetic resonance imaging-based evaluation of ossification of the medial clavicular epiphysis in forensic age assessment. Int J Legal Med 131:1665–1673. https://doi.org/10.1007/s00414-017-1676-5

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt S, Muhler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324. https://doi.org/10.1007/s00414-007-0160-z

    Article  PubMed  Google Scholar 

  38. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124:321–325. https://doi.org/10.1007/s00414-010-0448-2

    Article  PubMed  Google Scholar 

  39. Dedouit F, Auriol J, Rousseau H, Rouge D, Crubezy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(232):e1-7. https://doi.org/10.1016/j.forsciint.2011.11.013

    Article  Google Scholar 

  40. Fan F, Tu M, Li R et al (2020) Age estimation by multidetector computed tomography of cranial sutures in Chinese male adults. Am J Phys Anthropol 171:550–558. https://doi.org/10.1002/ajpa.23998

    Article  PubMed  Google Scholar 

  41. Fan F, Dong X, Wu X et al (2020) An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs. Forensic Sci Int 314:110350. https://doi.org/10.1016/j.forsciint.2020.110350

    Article  PubMed  Google Scholar 

  42. Phan CM, Matsuura M, Bauer JS et al (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 239:488–496. https://doi.org/10.1148/radiol.2392050574

    Article  PubMed  Google Scholar 

  43. Bauer JS, Monetti R, Krug R et al (2009) Advances of 3T MR imaging in visualizing trabecular bone structure of the calcaneus are partially SNR-independent: analysis using simulated noise in relation to micro-CT, 1.5T MRI, and biomechanical strength. J Magn Reson Imaging 29:132–140. https://doi.org/10.1002/jmri.21625

    Article  PubMed  Google Scholar 

  44. Sormaala MJ, Ruohola JP, Mattila VM, Koskinen SK, Pihlajamaki HK (2011) Comparison of 1.5T and 3T MRI scanners in evaluation of acute bone stress in the foot. BMC Musculoskelet Disord 12:128. https://doi.org/10.1186/1471-2474-12-128

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Tobel J, Hillewig E, de Haas MB et al (2019) Forensic age estimation based on T1 SE and VIBE wrist MRI: do a one-fits-all staging technique and age estimation model apply? Eur Radiol 29:2924–2935. https://doi.org/10.1007/s00330-018-5944-7

    Article  PubMed  Google Scholar 

  46. Vieth V, Schulz R, Heindel W et al (2018) Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol 28:3255–3262. https://doi.org/10.1007/s00330-017-5281-2

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Key Research and Development Program of Sichuan Province of China (grant number 2022YFS0530); the Opening Project of Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education (grant number 2021KFKT03); the Postdoctoral Research Project of Sichuan Province (grant number 2021–12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-hua Deng or Fei Fan.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of Sichuan University. Informed consent was waived because of the retrospective nature. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Research involving human participants and/or animals

Human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Ys., Tuerhong, Y., Chen, Cx. et al. Bone age assessment based on different MRI modalities of the proximal humerus epiphysis: the comparisons of T1WI, T2WI, and PDWI. Int J Legal Med (2024). https://doi.org/10.1007/s00414-024-03182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00414-024-03182-7

Keywords

Navigation