Faul M, Coronado V (2015) Epidemiology of traumatic brain injury. Handb Clin Neurol 127:3–13. https://doi.org/10.1016/B978-0-444-52892-6.00001-5
Article
PubMed
Google Scholar
GBD 2016 Neurology Collaborators (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:56–87. https://doi.org/10.1016/S1474-4422(18)30415-0
Jiang JY, Gao GY, Li WP, Yu MK, Zhu C (2002) Early indicators of prognosis in 846 cases of severe traumatic brain injury. J Neurotrauma 19:869–874. https://doi.org/10.1089/08977150260190456
Article
PubMed
Google Scholar
Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104:213–238. https://doi.org/10.1016/j.mcna.2019.11.001
Article
PubMed
Google Scholar
Chester V, Alexander RT (2018) Head banging as a form of self-harm among inpatients within forensic mental health and intellectual disability services. J Forensic Psychiatry Psychol 29:557–573
Article
Google Scholar
Kremer C, Racette S, Dionne CA, Sauvageau A (2008) Discrimination of falls and blows in blunt head trauma: systematic study of the hat brim line rule in relation to skull fractures. J Forensic Sci 53:716–719. https://doi.org/10.1111/j.1556-4029.2008.00725.x
Article
PubMed
Google Scholar
Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H (2006) Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Leg Med (Tokyo) 8:71–77. https://doi.org/10.1016/j.legalmed.2005.07.004
CAS
Article
Google Scholar
Belsey SL, Flanagan RJ (2016) Postmortem biochemistry: current applications. J Forensic Leg Med 41:49–57. https://doi.org/10.1016/j.jflm.2016.04.011
CAS
Article
PubMed
Google Scholar
Goyal A, Failla MD, Niyonkuru C et al (2013) S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J Neurotrauma 30:946–957. https://doi.org/10.1089/neu.2012.2579
Article
PubMed
PubMed Central
Google Scholar
Kumar RG, Diamond ML, Boles JA et al (2015) Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 45:253–262. https://doi.org/10.1016/j.bbi.2014.12.021
CAS
Article
PubMed
Google Scholar
Ondruschka B, Sieber M, Kirsten H, Franke H, Dressler J (2018) Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids. J Neurotrauma 35:2044–2055. https://doi.org/10.1089/neu.2017.5441
Article
PubMed
Google Scholar
Zwirner J, Anders S, Bohnert S et al (2021) Screening for fatal traumatic brain injuries in cerebrospinal fluid using blood-validated CK and CK–MB immunoassays. Biomolecules 11:1061. https://doi.org/10.3390/biom11071061
Olczak M, Kwiatkowska M, Niderla-Bielinska J, Chutoranski D, Tarka S, Wierzba-Bobrowicz T (2018) Brain-originated peptides as possible biochemical markers of traumatic brain injury in cerebrospinal fluid post-mortem examination. Folia Neuropathol 56:97–103. https://doi.org/10.5114/fn.2018.76613
Article
PubMed
Google Scholar
Dash PK, Zhao J, Hergenroeder G, Moore AN (2010) Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7:100–114. https://doi.org/10.1016/j.nurt.2009.10.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Ondruschka B, Babian C, Neef M, Zwirner J, Schwarz M (2019) Entomological and cardiologic evidence of time since death in short postmortem intervals. J Forensic Sci 64:1563–1567. https://doi.org/10.1111/1556-4029.14010
Article
PubMed
Google Scholar
Trautz F, Franke H, Bohnert S et al (2019) Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep 9:11771. https://doi.org/10.1038/s41598-019-48145-w
CAS
Article
PubMed
PubMed Central
Google Scholar
Agoston DV, Shutes-David A, Peskind ER (2017) Biofluid biomarkers of traumatic brain injury. Brain Inj 31:1195–1203. https://doi.org/10.1080/02699052.2017.1357836
Article
PubMed
Google Scholar
Luna A (2009) Is postmortem biochemistry really useful? Why is it not widely used in forensic pathology? Leg Med (Tokyo) 11(Suppl 1):S27-30. https://doi.org/10.1016/j.legalmed.2009.02.040
Article
Google Scholar
Zetterberg H, Blennow K (2016) Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol 12:563–574. https://doi.org/10.1038/nrneurol.2016.127
CAS
Article
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–41. https://doi.org/10.1016/j.ijsu.2010.02.007
Article
PubMed
Google Scholar
Mimasaka S, Funayama M, Hashiyada M, Nata M, Tsunenari S (2007) Significance of levels of IL-6 and IL-8 after trauma: a study of 11 cytokines post-mortem using multiplex immunoassay. Injury 38:1047–1051. https://doi.org/10.1016/j.injury.2007.02.045
CAS
Article
PubMed
Google Scholar
Mimasaka S, Hashiyada M, Nata M, Funayama M (2001) Correlation between serum IL-6 levels and death: usefulness in diagnosis of “traumatic shock”? Tohoku J Exp Med 193:319–324. https://doi.org/10.1620/tjem.193.319
CAS
Article
PubMed
Google Scholar
Ondruschka B, Schuch S, Pohlers D, Franke H, Dressler J (2018) Acute phase response after fatal traumatic brain injury. Int J Legal Med 132:531–539. https://doi.org/10.1007/s00414-017-1768-2
Article
PubMed
Google Scholar
Ondruschka B, Woydt L, Bernhard M et al (2019) Post-mortem in situ stability of serum markers of cerebral damage and acute phase response. Int J Legal Med 133:871–881. https://doi.org/10.1007/s00414-018-1925-2
Article
PubMed
Google Scholar
Mimasaka S (2002) Postmortem cytokine levels and the cause of death. Tohoku J Exp Med 197:145–150. https://doi.org/10.1620/tjem.197.145
CAS
Article
PubMed
Google Scholar
Zwirner J, Bohnert S, Franke H et al (2021) Assessing protein biomarkers to detect lethal acute traumatic brain injuries in cerebrospinal fluid. Biomolecules 11(11):1577. https://doi.org/10.3390/biom11111577
Breitling B, Brunkhorst R, Verhoff M, Foerch C (2018) Post-mortem serum concentrations of GFAP correlate with agony time but do not indicate a primary cerebral cause of death. PLoS ONE 13:e0205323. https://doi.org/10.1371/journal.pone.0205323
CAS
Article
PubMed
PubMed Central
Google Scholar
Osuna E, Perez-Carceles MD, Luna A, Pounder DJ (1992) Efficacy of cerebro-spinal fluid biochemistry in the diagnosis of brain insult. Forensic Sci Int 52:193–198. https://doi.org/10.1016/0379-0738(92)90107-8
CAS
Article
PubMed
Google Scholar
Vazquez MD, Sanchez-Rodriguez F, Osuna E et al (1995) Creatine kinase BB and neuron-specific enolase in cerebrospinal fluid in the diagnosis of brain insult. Am J Forensic Med Pathol 16:210–214. https://doi.org/10.1097/00000433-199509000-00004
CAS
Article
PubMed
Google Scholar
Ondruschka B, Pohlers D, Sommer G et al (2013) S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J Neurotrauma 30:1862–1871. https://doi.org/10.1089/neu.2013.2895
Article
PubMed
Google Scholar
Sieber M, Dressler J, Franke H, Pohlers D, Ondruschka B (2018) Post-mortem biochemistry of NSE and S100B: a supplemental tool for detecting a lethal traumatic brain injury? J Forensic Leg Med 55:65–73. https://doi.org/10.1016/j.jflm.2018.02.016
Article
PubMed
Google Scholar
Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H (2006) Immunohistochemical distribution of S-100 protein in the cerebral cortex with regard to the cause of death in forensic autopsy. Leg Med (Tokyo) 8:78–85. https://doi.org/10.1016/j.legalmed.2005.09.002
CAS
Article
Google Scholar
Olczak M, Poniatowski LA, Niderla-Bielinska J et al (2019) Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood-brain barrier disruption in postmortem examination. Forensic Sci Int 301:28–36. https://doi.org/10.1016/j.forsciint.2019.05.010
CAS
Article
PubMed
Google Scholar
Olczak M, Niderla-Bielinska J, Kwiatkowska M, Samojlowicz D, Tarka S, Wierzba-Bobrowicz T (2017) Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int 280:1–7. https://doi.org/10.1016/j.forsciint.2017.09.008
CAS
Article
PubMed
Google Scholar
Plog BA, Dashnaw ML, Hitomi E et al (2015) Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci 35:518–526. https://doi.org/10.1523/JNEUROSCI.3742-14.2015
CAS
Article
PubMed
PubMed Central
Google Scholar
Haque A, Ray SK, Cox A, Banik NL (2016) Neuron specific enolase: a promising therapeutic target in acute spinal cord injury. Metab Brain Dis 31:487–495. https://doi.org/10.1007/s11011-016-9801-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Zoltewicz JS, Mondello S, Yang B et al (2013) Biomarkers track damage after graded injury severity in a rat model of penetrating brain injury. J Neurotrauma 30:1161–1169. https://doi.org/10.1089/neu.2012.2762
Article
PubMed
Google Scholar
Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6:a016295. https://doi.org/10.1101/cshperspect.a016295
Article
PubMed
PubMed Central
Google Scholar
Ghandour MS, Labourdette G, Vincendon G, Gombos G (1981) A biochemical and immunohistological study of S100 protein in developing rat cerebellum. Dev Neurosci 4:98–109. https://doi.org/10.1159/000112745
CAS
Article
PubMed
Google Scholar
Krohn M, Dressler J, Bauer M, Schober K, Franke H, Ondruschka B (2015) Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury and its application for survival time determination. J Neurotrauma 32:430–440. https://doi.org/10.1089/neu.2014.3524
Article
PubMed
Google Scholar
Sen J, Belli A (2007) S100B in neuropathologic states: the CRP of the brain? J Neurosci Res 85:1373–1380. https://doi.org/10.1002/jnr.21211
CAS
Article
PubMed
Google Scholar
Cocchia D, Miani N (1980) Immunocytochemical localization of the brain-specific S-100 protein in the pituitary gland of adult rat. J Neurocytol 9:771–782. https://doi.org/10.1007/BF01205018
CAS
Article
PubMed
Google Scholar
Vila-Porcile E (1972) The network of the folliculo-stellate cells and the follicles of the adenohypophysis in the rat (pars distalis). Z Zellforsch Mikrosk Anat 129:328–369
CAS
Article
Google Scholar
Schmechel D, Marangos PJ, Brightman M (1978) Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836. https://doi.org/10.1038/276834a0
CAS
Article
PubMed
Google Scholar
Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K (1985) Immunohistochemical localization of gamma-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 52:257–263
CAS
PubMed
Google Scholar
Eng LF (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8:203–214. https://doi.org/10.1016/s0165-5728(85)80063-1
CAS
Article
PubMed
Google Scholar
Arneson D, Zhang G, Ying Z et al (2018) Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun 9:3894. https://doi.org/10.1038/s41467-018-06222-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Hol EM, Roelofs RF, Moraal E et al (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8:786–796. https://doi.org/10.1038/sj.mp.4001379
CAS
Article
PubMed
Google Scholar
Bender BL, Yunis EJ (1980) Central nervous system pathology of tuberous sclerosis in children. Ultrastruct Pathol 1:287–299. https://doi.org/10.3109/01913128009141432
CAS
Article
PubMed
Google Scholar
Yang Z, Wang KK (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 38:364–374. https://doi.org/10.1016/j.tins.2015.04.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Brenner M (1994) Structure and transcriptional regulation of the GFAP gene. Brain Pathol 4:245–257. https://doi.org/10.1111/j.1750-3639.1994.tb00840.x
CAS
Article
PubMed
Google Scholar
Sanceau J, Falcoff R, Beranger F, Carter DB, Wietzerbin J (1990) Secretion of interleukin-6 (IL-6) by human monocytes stimulated by muramyl dipeptide and tumour necrosis factor alpha. Immunology 69:52–56
CAS
PubMed
PubMed Central
Google Scholar
Benveniste EN, Sparacio SM, Norris JG, Grenett HE, Fuller GM (1990) Induction and regulation of interleukin-6 gene expression in rat astrocytes. J Neuroimmunol 30:201–212. https://doi.org/10.1016/0165-5728(90)90104-u
CAS
Article
PubMed
Google Scholar
Woodroofe MN, Sarna GS, Wadhwa M et al (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 33:227–236. https://doi.org/10.1016/0165-5728(91)90110-s
CAS
Article
PubMed
Google Scholar
Welc SS, Clanton TL (2013) The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol 98:359–371. https://doi.org/10.1113/expphysiol.2012.068189
CAS
Article
PubMed
Google Scholar
Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78. https://doi.org/10.1016/s0065-2776(08)60532-5
CAS
Article
PubMed
Google Scholar
Donato R, Sorci G, Riuzzi F et al (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022. https://doi.org/10.1016/j.bbamcr.2008.11.009
CAS
Article
PubMed
Google Scholar
Van Eldik LJ, Christie-Pope B, Bolin LM, Shooter EM, Whetsell WO Jr (1991) Neurotrophic activity of S-100 beta in cultures of dorsal root ganglia from embryonic chick and fetal rat. Brain Res 542:280–285. https://doi.org/10.1016/0006-8993(91)91579-p
Article
PubMed
Google Scholar
Willoughby KA, Kleindienst A, Muller C, Chen T, Muir JK, Ellis EF (2004) S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem 91:1284–1291. https://doi.org/10.1111/j.1471-4159.2004.02812.x
CAS
Article
PubMed
Google Scholar
Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ (1991) Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci U S A 88:3554–3558. https://doi.org/10.1073/pnas.88.9.3554
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313:239–245. https://doi.org/10.1016/0167-4889(96)00095-x
Article
PubMed
Google Scholar
Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D (2016) Blood biomarkers for brain injury: what are we measuring? Neurosci Biobehav Rev 68:460–473. https://doi.org/10.1016/j.neubiorev.2016.05.009
CAS
Article
PubMed
PubMed Central
Google Scholar
Hafner A, Obermajer N, Kos J (2012) gamma-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem J 443:439–450. https://doi.org/10.1042/BJ20111351
CAS
Article
PubMed
Google Scholar
Zheng J, Liang J, Deng X et al (2012) Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells. Neural Regen Res 7:1370–1377
PubMed
PubMed Central
Google Scholar
Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. https://doi.org/10.1007/s00401-009-0619-8
Article
PubMed
Google Scholar
Kishimoto T (2010) IL-6: from its discovery to clinical applications. Int Immunol 22:347–352. https://doi.org/10.1093/intimm/dxq030
CAS
Article
PubMed
Google Scholar
Romano M, Sironi M, Toniatti C et al (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–325. https://doi.org/10.1016/s1074-7613(00)80334-9
CAS
Article
PubMed
Google Scholar
Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25:649–658. https://doi.org/10.1111/j.1460-9568.2007.05309.x
Article
PubMed
Google Scholar
Di Pietro V, Amorini AM, Lazzarino G et al (2015) S100B and glial fibrillary acidic protein as indexes to monitor damage severity in an in vitro model of traumatic brain injury. Neurochem Res 40:991–999. https://doi.org/10.1007/s11064-015-1554-9
CAS
Article
PubMed
Google Scholar
Li DR, Ishikawa T, Zhao D et al (2009) Histopathological changes of the hippocampus neurons in brain injury. Histol Histopathol 24:1113–1120. https://doi.org/10.14670/HH-24.1113
Article
PubMed
Google Scholar
Petzold A, Keir G, Green AJ, Giovannoni G, Thompson EJ (2004) An ELISA for glial fibrillary acidic protein. J Immunol Methods 287:169–177. https://doi.org/10.1016/j.jim.2004.01.015
CAS
Article
PubMed
Google Scholar
Frugier T, Morganti-Kossmann MC, O’Reilly D, McLean CA (2010) In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 27:497–507. https://doi.org/10.1089/neu.2009.1120
Article
PubMed
Google Scholar
Williams AJ, Wei HH, Dave JR, Tortella FC (2007) Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 4:17. https://doi.org/10.1186/1742-2094-4-17
CAS
Article
PubMed
PubMed Central
Google Scholar
Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179:53–56. https://doi.org/10.1016/0304-3940(94)90933-4
CAS
Article
PubMed
Google Scholar
Raabe A, Kopetsch O, Gross U, Zimmermann M, Gebhart P (2003) Measurements of serum S-100B protein: effects of storage time and temperature on pre-analytical stability. Clin Chem Lab Med 41:700–703. https://doi.org/10.1515/CCLM.2003.106
CAS
Article
PubMed
Google Scholar
Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, Maquart FX (2005) Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 43:1215–1217. https://doi.org/10.1515/CCLM.2005.210
CAS
Article
PubMed
Google Scholar
Abdelhak A, Hottenrott T, Morenas-Rodriguez E et al (2019) Glial activation markers in CSF and serum from patients with primary progressive multiple sclerosis: potential of serum GFAP as disease severity marker? Front Neurol 10:280. https://doi.org/10.3389/fneur.2019.00280
Article
PubMed
PubMed Central
Google Scholar
Schwieler L, Larsson MK, Skogh E et al (2015) Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia–significance for activation of the kynurenine pathway. J Psychiatry Neurosci 40:126–133. https://doi.org/10.1503/jpn.140126
Article
PubMed
PubMed Central
Google Scholar
Kenis G, Teunissen C, De Jongh R, Bosmans E, Steinbusch H, Maes M (2002) Stability of interleukin 6, soluble interleukin 6 receptor, interleukin 10 and CC16 in human serum. Cytokine 19:228–235
CAS
Article
Google Scholar
Rezaii PG, Grant GA, Zeineh MM et al (2019) Stability of blood biomarkers of traumatic brain injury. J Neurotrauma 36:2407–2416. https://doi.org/10.1089/neu.2018.6053
Article
PubMed
Google Scholar
Ikeda Y, Umemura K (2005) Analysis of reference values of serum S100B concentrations of Japanese adults. Rinsho Byori 53:395–399
CAS
PubMed
Google Scholar
Garver DL, Tamas RL, Holcomb JA (2003) Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 28:1515–1520. https://doi.org/10.1038/sj.npp.1300217
CAS
Article
PubMed
Google Scholar
Fraser DD, Close TE, Rose KL et al (2011) Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum. Pediatr Crit Care Med 12:319–324. https://doi.org/10.1097/PCC.0b013e3181e8b32d
Article
PubMed
Google Scholar
Casmiro M, Maitan S, De Pasquale F et al (2005) Cerebrospinal fluid and serum neuron-specific enolase concentrations in a normal population. Eur J Neurol 12:369–374. https://doi.org/10.1111/j.1468-1331.2004.01021.x
CAS
Article
PubMed
Google Scholar
Schindler CR, Lustenberger T, Woschek M et al (2020) Severe traumatic brain injury (TBI) modulates the kinetic profile of the inflammatory response of markers for neuronal damage. J Clin Med 9.https://doi.org/10.3390/jcm9061667
Lei J, Gao G, Feng J et al (2015) Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit Care 19:362. https://doi.org/10.1186/s13054-015-1081-8
Article
PubMed
PubMed Central
Google Scholar
Ferreira LC, Regner A, Miotto KD et al (2014) Increased levels of interleukin-6, -8 and -10 are associated with fatal outcome following severe traumatic brain injury. Brain Inj 28:1311–1316. https://doi.org/10.3109/02699052.2014.916818
Article
PubMed
Google Scholar
Jaenicke R, Knof S (1968) Molecular weight and quaternary structure of lactic dehydrogenase. 3. Comparative determination by sedimentation analysis, light scattering and osmosis. Eur J Biochem 4:157–163. https://doi.org/10.1111/j.1432-1033.1968.tb00187.x
CAS
Article
PubMed
Google Scholar
Worwood M (1990) Ferritin. Blood Rev 4:259–269. https://doi.org/10.1016/0268-960x(90)90006-e
CAS
Article
PubMed
Google Scholar
Jungbluth S, Bailey K, Barde YA (1994) Purification and characterisation of a brain-derived neurotrophic factor/neurotrophin-3 (BDNF/NT-3) heterodimer. Eur J Biochem 221:677–685. https://doi.org/10.1111/j.1432-1033.1994.tb18780.x
CAS
Article
PubMed
Google Scholar
Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124. https://doi.org/10.1016/s0301-0082(00)00014-9
CAS
Article
PubMed
Google Scholar
Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432
CAS
Article
Google Scholar
Farhana A, Lappin SL (2021) Biochemistry, Lactate Dehydrogenase. StatPearls Treasure Island, FL
Google Scholar
Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 33:457–463. https://doi.org/10.1016/s0891-5849(02)00842-0
CAS
Article
PubMed
Google Scholar
Liu HD, Li W, Chen ZR et al (2013) Increased expression of ferritin in cerebral cortex after human traumatic brain injury. Neurol Sci 34:1173–1180. https://doi.org/10.1007/s10072-012-1214-7
Article
PubMed
Google Scholar
Dreyfus CF, Dai X, Lercher LD, Racey BR, Friedman WJ, Black IB (1999) Expression of neurotrophins in the adult spinal cord in vivo. J Neurosci Res 56:1–7. https://doi.org/10.1002/(SICI)1097-4547(19990401)56:1%3c1::AID-JNR1%3e3.0.CO;2-3
CAS
Article
PubMed
Google Scholar
Lommatzsch M, Zingler D, Schuhbaeck K et al (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123. https://doi.org/10.1016/j.neurobiolaging.2004.03.002
CAS
Article
PubMed
Google Scholar
Lommatzsch M, Braun A, Mannsfeldt A et al (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. Am J Pathol 155:1183–1193. https://doi.org/10.1016/S0002-9440(10)65221-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45:17–23. https://doi.org/10.1006/geno.1997.4896
CAS
Article
PubMed
Google Scholar
Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482:272–283. https://doi.org/10.1016/s0167-4838(00)00152-7
CAS
Article
PubMed
Google Scholar
Zhao J, Chen H, Zhang M et al (2016) Early expression of serum neutrophil gelatinase-associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury. J Neurol Sci 368:392–398. https://doi.org/10.1016/j.jns.2016.07.060
CAS
Article
PubMed
Google Scholar
Lagana G, Barreca D, Calderaro A, Bellocco E (2019) Lactate dehydrogenase inhibition: biochemical relevance and therapeutical potential. Curr Med Chem 26:3242–3252. https://doi.org/10.2174/0929867324666170209103444
CAS
Article
PubMed
Google Scholar
Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70:271–288. https://doi.org/10.1002/dneu.20774
CAS
Article
PubMed
PubMed Central
Google Scholar
Beatty WW, Monson N, Goodkin DE (1989) Access to semantic memory in Parkinson’s disease and multiple sclerosis. J Geriatr Psychiatry Neurol 2:153–162. https://doi.org/10.1177/089198878900200306
CAS
Article
PubMed
Google Scholar
Alonso M, Vianna MR, Depino AM et al (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12:551–560. https://doi.org/10.1002/hipo.10035
CAS
Article
PubMed
Google Scholar
Jha MK, Lee S, Park DH et al (2015) Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 49:135–156. https://doi.org/10.1016/j.neubiorev.2014.12.006
CAS
Article
PubMed
Google Scholar
Giordano G, Hong S, Faustman EM, Costa LG (2011) Measurements of cell death in neuronal and glial cells. Methods Mol Biol 758:171–178. https://doi.org/10.1007/978-1-61779-170-3_11
CAS
Article
PubMed
Google Scholar
Rao CJ, Shukla PK, Mohanty S, Reddy YJ (1978) Predictive value of serum lactate dehydrogenase in head injury. J Neurol Neurosurg Psychiatry 41:948–953. https://doi.org/10.1136/jnnp.41.10.948
CAS
Article
PubMed
PubMed Central
Google Scholar
Newell E, Shellington DK, Simon DW et al (2015) Cerebrospinal fluid markers of macrophage and lymphocyte activation after traumatic brain injury in children. Pediatr Crit Care Med 16:549–557. https://doi.org/10.1097/PCC.0000000000000400
Article
PubMed
PubMed Central
Google Scholar
Keir G, Tasdemir N, Thompson EJ (1993) Cerebrospinal fluid ferritin in brain necrosis: evidence for local synthesis. Clin Chim Acta 216:153–166. https://doi.org/10.1016/0009-8981(93)90148-w
CAS
Article
PubMed
Google Scholar
Hicks RR, Numan S, Dhillon HS, Prasad MR, Seroogy KB (1997) Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Brain Res Mol Brain Res 48:401–406. https://doi.org/10.1016/s0169-328x(97)00158-7
CAS
Article
PubMed
Google Scholar
Cuhadar S, Koseoglu M, Atay A, Dirican A (2013) The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochem Med (Zagreb) 23:70–77. https://doi.org/10.11613/bm.2013.009
CAS
Article
Google Scholar
Brinc D, Chan MK, Venner AA et al (2012) Long-term stability of biochemical markers in pediatric serum specimens stored at -80 degrees C: a CALIPER Substudy. Clin Biochem 45:816–826. https://doi.org/10.1016/j.clinbiochem.2012.03.029
CAS
Article
PubMed
Google Scholar
Kang HJ, Jeon SY, Park JS et al (2013) Identification of clinical biomarkers for pre-analytical quality control of blood samples. Biopreserv Biobank 11:94–100. https://doi.org/10.1089/bio.2012.0051
CAS
Article
PubMed
PubMed Central
Google Scholar
Polyakova M, Schlogl H, Sacher J et al (2017) Stability of BDNF in human samples stored up to 6 months and correlations of serum and EDTA-plasma concentrations. Int J Mol Sci 18.https://doi.org/10.3390/ijms18061189
Wang J, Zhu HH, Xue JH, Wu SS, Chen Z (2015) Effects of storage conditions on the stability of serum CD163, NGAL, HMGB1 and MIP2. Int J Clin Exp Pathol 8:4099–4105
PubMed
PubMed Central
Google Scholar
Pedersen KR, Ravn HB, Hjortdal VE, Norregaard R, Povlsen JV (2010) Neutrophil gelatinase-associated lipocalin (NGAL): validation of commercially available ELISA. Scand J Clin Lab Invest 70:374–382. https://doi.org/10.3109/00365513.2010.486868
CAS
Article
PubMed
Google Scholar
Shimizu Y, Ichihara K (2019) Elucidation of stability profiles of common chemistry analytes in serum stored at six graded temperatures. Clin Chem Lab Med 57:1388–1396. https://doi.org/10.1515/cclm-2018-1109
CAS
Article
PubMed
Google Scholar
Spencer BR, Brodsky JP, Holley GC, Foster GA, Winton C, Stramer SL (2019) Expanded feasibility of ferritin testing: stability of ferritin stored as whole blood and validation of plastic tubes. Transfusion 59:3424–3430. https://doi.org/10.1111/trf.15513
CAS
Article
PubMed
Google Scholar
Sacri AS, Ferreira D, Khoshnood B, Gouya L, Barros H, Chalumeau M (2017) Stability of serum ferritin measured by immunoturbidimetric assay after storage at -80 degrees C for several years. PLoS ONE 12:e0188332. https://doi.org/10.1371/journal.pone.0188332
CAS
Article
PubMed
PubMed Central
Google Scholar
Bakay RA, Ward AA Jr (1983) Enzymatic changes in serum and cerebrospinal fluid in neurological injury. J Neurosurg 58:27–37. https://doi.org/10.3171/jns.1983.58.1.0027
CAS
Article
PubMed
Google Scholar
Failla MD, Conley YP, Wagner AK (2016) Brain-derived neurotrophic factor (BDNF) in traumatic brain injury-related mortality: interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabil Neural Repair 30:83–93. https://doi.org/10.1177/1545968315586465
Article
PubMed
Google Scholar
Petzold A, Worthington V, Appleby I, Kerr ME, Kitchen N, Smith M (2011) Cerebrospinal fluid ferritin level, a sensitive diagnostic test in late-presenting subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 20:489–493. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.02.021
Article
PubMed
Google Scholar
Simon D, Nicol JM, Sabino da Silva S et al (2015) Serum ferritin correlates with Glasgow coma scale scores and fatal outcome after severe traumatic brain injury. Brain Inj 29:612–617. https://doi.org/10.3109/02699052.2014.995228
Article
PubMed
Google Scholar
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526. https://doi.org/10.1016/0896-6273(89)90210-9
CAS
Article
PubMed
Google Scholar
Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI (2010) Tau protein: relevance to Parkinson’s disease. Int J Biochem Cell Biol 42:1775–1778. https://doi.org/10.1016/j.biocel.2010.07.016
CAS
Article
PubMed
Google Scholar
Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704. https://doi.org/10.1007/s00401-017-1707-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Trojanowski JQ, Schuck T, Schmidt ML, Lee VM (1989) Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37:209–215. https://doi.org/10.1177/37.2.2492045
CAS
Article
PubMed
Google Scholar
Longnecker MP, Clapp RW, Sheahan K (1989) Associations between smoking status and stage of colorectal cancer at diagnosis in Massachusetts between 1982 and 1987. Cancer 64:1372–1374. https://doi.org/10.1002/1097-0142(19890915)64:6%3c1372::aid-cncr2820640633%3e3.0.co;2-i
CAS
Article
PubMed
Google Scholar
Schoonenboom NS, Mulder C, Vanderstichele H et al (2005) Effects of processing and storage conditions on amyloid beta (1–42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin Chem 51:189–195. https://doi.org/10.1373/clinchem.2004.039735
CAS
Article
PubMed
Google Scholar
Öst M, Nylen K, Csajbok L et al (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67:1600–1604. https://doi.org/10.1212/01.wnl.0000242732.06714.0f
CAS
Article
PubMed
Google Scholar
Liliang PC, Liang CL, Weng HC et al (2010) Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 160:302–307. https://doi.org/10.1016/j.jss.2008.12.022
CAS
Article
PubMed
Google Scholar
Andreasen N, Vanmechelen E, Van de Voorde A et al (1998) Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community based follow up study. J Neurol Neurosurg Psychiatry 64:298–305. https://doi.org/10.1136/jnnp.64.3.298
CAS
Article
PubMed
PubMed Central
Google Scholar
Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T (2009) Significance of postmortem biochemistry in determining the cause of death. Leg Med (Tokyo) 11(Suppl 1):S46–S49. https://doi.org/10.1016/j.legalmed.2009.01.048
Article
Google Scholar
O’Connell GC, Smothers CG, Winkelman C (2020) Bioinformatic analysis of brain-specific miRNAs for identification of candidate traumatic brain injury blood biomarkers. Brain Inj 34:965–974. https://doi.org/10.1080/02699052.2020.1764102
Article
PubMed
Google Scholar
Bohnert S, Reinert C, Trella S, Schmitz W, Ondruschka B, Bohnert M (2021) Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes. Int J Legal Med 135:183–191. https://doi.org/10.1007/s00414-020-02462-2
Article
PubMed
Google Scholar
Szeremeta M, Pietrowska K, Niemcunowicz-Janica A, Kretowski A, Ciborowski M (2021) Applications of metabolomics in forensic toxicology and forensic medicine. Int J Mol Sci 22.https://doi.org/10.3390/ijms22063010
Ludwig N, Leidinger P, Becker K et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877. https://doi.org/10.1093/nar/gkw116
CAS
Article
PubMed
PubMed Central
Google Scholar