Skip to main content

Biomarker profiling of postmortem blood for diabetes mellitus and discussion of possible applications of metabolomics for forensic casework

Abstract

Acute metabolic disorders of diabetes mellitus (DM), such as diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia, are life-threatening and difficult to diagnose postmortem owing to lack of macroscopic and microscopic findings, especially when the medical history of the patient is not available before autopsy. Although various biochemical tests, including ketone bodies and hemoglobin A1c, have been used to diagnose diabetes in the postmortem setting, each marker has some limitations. Consequently, it would be helpful in forensic practice to find new biomarkers reflecting the decedent’s history of DM irrespective of whether the DM was being treated. Metabolomics enables the non-targeting analysis of biomarkers, and metabolomics was performed on postmortem blood from decedents with and without a DM history to determine whether a marker reflecting DM could be identified. The statistical analysis, including primary component analysis, presented a potent set of metabolites that could be used for the forensic diagnosis of DM. Qualitative analysis revealed significantly lower sphingomyelin and plasmalogen lipid levels and higher lysophospholipid levels in the DM group. Meanwhile, some discrepancies in the levels of some classes of phospholipids were noted between samples from living and deceased persons. This suggests that further metabolomics using postmortem samples rather than living persons’ samples is required to identify markers that can be used for forensic diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol 8(4):228–236. https://doi.org/10.1038/nrendo.2011.183

    CAS  Article  PubMed  Google Scholar 

  2. Palmiere C (2015) Postmortem diagnosis of diabetes mellitus and its complications. Croat Med J 56(3):181–193. https://doi.org/10.3325/cmj.2015.56.181

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  3. Palmiere C, Mangin P (2012) Postmortem chemistry update part I. Int J Legal Med 126(6):187–198. https://doi.org/10.1007/s00414-011-0625-y

    Article  PubMed  Google Scholar 

  4. Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, Lambert M, Lapierre P, Potier E (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18(3):193–216

    CAS  PubMed  Google Scholar 

  5. Winecker RE, Hammett-Stabler CA, Chapman JF, Ropero-Miller JD (2002) HbA1c as a postmortem tool to identify glycemic control. J Forensic Sci 47(6):1373–1379

    CAS  Article  PubMed  Google Scholar 

  6. Khuu HM, Robinson CA, Goolsby K, Hardy RW, Konrad RJ (1999) Evaluation of a fully automated high-performance liquid chromatography assay for hemoglobin A1c. Arch Pathol Lab Med 123(9):763–767. https://doi.org/10.5858/1999-123-0763-EOAFAH

    CAS  Article  PubMed  Google Scholar 

  7. Lipska KJ, Warton EM, Huang ES, Moffet HH, Inzucchi SE, Krumholz HM, Karter AJ (2013) HbA1c and risk of severe hypoglycemia in type 2 diabetes. Diabetes Care 36(11):3535–3542. https://doi.org/10.2337/dc13-0610

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  8. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS ONE 7(7):e40459. https://doi.org/10.1371/journal.pone.0040459

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  9. Thomas A, Déglon J, Lenglet S, Mach F, Mangin P, Wolfender JL, Steffens S, Staub C (2010) High-throughput phospholipidic fingerprinting by online desorption of dried spots and quadrupole-linear ion trap mass spectrometry: evaluation of atherosclerosis biomarkers in mouse plasma. Anal Chem 82(15):6687–6694. https://doi.org/10.1021/ac101421b

    CAS  Article  PubMed  Google Scholar 

  10. Ogawa S, Hattori K, Sasayama D, Yokota Y, Matsumura R, Matsuo J, Ota M, Hori H, Teraishi T, Yoshida S, Noda T, Ohashi Y, Sato H, Higuchi T, Motohashi N, Kunugi H (2015) Reduced cerebrospinal fluid ethanolamine concentration in major depressive disorder. Sci Rep 5:7796. https://doi.org/10.1038/srep07796

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  11. Adachi J, Matsushita S, Yoshioka N, Funae R, Fujita T, Higuchi S, Ueno Y (2004) Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in alcoholic patients. J Lipid Res 45(5):961–971. https://doi.org/10.1194/jlr.M400008-JLR200

    CAS  Article  Google Scholar 

  12. Hammad LA, Wu G, Saleh MM, Klouckova I, Dobrolecki LE, Hickey RJ, Schnaper L, Novotny MV, Mechref Y (2009) Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun Mass Spectrom 23(6):863–876. https://doi.org/10.1002/rcm.3947

    CAS  Article  PubMed  Google Scholar 

  13. Haines NR, Manoharan N, Olson JL, D’Alessandro A, Reisz JA (2018) Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment. J Proteome Res 17(7):2421–2427. https://doi.org/10.1021/acs.jproteome.8b00169

    CAS  Article  PubMed  Google Scholar 

  14. Barnes VM, Kennedy AD, Panagakos F, Devizio W, Trivedi HM, Jönsson T, Guo L, Cervi S, Scannapieco FA (2014) Global metabolomic analysis of human saliva and plasma from healthy and diabetic subjects, with and without periodontal disease. PLoS One 18;9(8):e105181. https://doi.org/10.1371/journal.pone.0105181

    CAS  Article  Google Scholar 

  15. Abe H, Yajima D, Hoshioka Y, Nara A, Nagasawa S, Iwase H (2017) Myoglobinemia markers with potential applications in forensic sample analysis: lipid markers in myoglobinemia for postmortem blood. Int J Legal Med 131(6):1739–1746. https://doi.org/10.1007/s00414-017-1657-8

    Article  PubMed  Google Scholar 

  16. van Ginneken V, Verheij E, Hekman M, van der Greef J (2017) Characterization of the lipid profile post mortem for type-2 diabetes in human brain and plasma of the elderly with LCMS-techniques: a descriptive approach of diabetic encephalopathy. Integr Mol Med 4(2):1–10. https://doi.org/10.15761/IMM.1000278

    Article  Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    CAS  Article  PubMed  Google Scholar 

  18. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinforma 55(1):1–91. https://doi.org/10.1002/cpbi.11

    Article  Google Scholar 

  19. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Vandergheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526. https://doi.org/10.1038/nmeth.339310.1038/nmeth.3393

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  20. Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88(16):7946–7958. https://doi.org/10.1021/acs.analchem.6b00770

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  21. Duan RD, Hertervig E, Nyberg L, Hauge T, Sternby B, Lillienau J, Farooqi A, Nilsson A (1996) Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci 41(9):1801–1806. https://doi.org/10.1007/BF02088748

    CAS  Article  PubMed  Google Scholar 

  22. Stoffel W (1999) Functional analysis of acid and neutral sphingomyelinases in vitro and in vivo. Chem Phys Lipids 102(1–2):107–121. https://doi.org/10.1016/S0009-3084(99)00079-1

    CAS  Article  PubMed  Google Scholar 

  23. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510(7503):58–67. https://doi.org/10.1038/nature13475

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  24. Hailemariam TK, Huan C, Liu J, Li Z, Roman C, Kalbfeisch M, Bui HH, Peake DA, Kuo MS, Cao G, Wadgaonkar R, Jiang XC (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol 28(8):1519–1526. https://doi.org/10.1161/ATVBAHA.108.168682

    CAS  Article  PubMed  Google Scholar 

  25. Lou B, Dong J, Li Y, Ding T, Bi T, Li Y, Deng X, Ye D, Jiang XC (2014) Pharmacologic inhibition of sphingomyelin synthase (SMS) activity reduces apolipoprotein-B secretion from hepatocytes and attenuates endotoxin-mediated macrophage inflammation. PLoS ONE 9(7):e102641. https://doi.org/10.1371/journal.pone.0102641

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  26. Li Z, Fan Y, Liu J, Li Y, Huan C, Bui HH, Kuo MS, Park TS, Cao G, Jiang XC (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32(7):1577–1584. https://doi.org/10.1161/ATVBAHA.112.251538

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  27. Ohnishi T, Hashizume C, Taniguchi M, Furumoto H, Han J, Gao R, Kinami S, Kosaka T, Okazaki T (2017) Sphingomyelin synthase 2 deficiency inhibits the induction of murine colitis-associated colon cancer. FASEB J 31(9):3816–3830. https://doi.org/10.1096/fj.201601225RR

    CAS  Article  PubMed  Google Scholar 

  28. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, Kirwan JP (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58(2):337–343. https://doi.org/10.2337/db08-1228

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  29. de Mello VD, Lankinen M, Schwab U, Kolehmainen M, Lehto S, Seppanen-Laakso T, Oresic M, Pulkkinen L, Uusitupa M, Erkkila AT (2009) Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52(12):2612–2615. https://doi.org/10.1007/s00125-009-1482-9

    CAS  Article  PubMed  Google Scholar 

  30. Zeghari N, Younsi M, Meyer L, Donner M, Drouin P, Ziegler O (2000) Adipocyte and erythrocyte plasma membrane phospholipid composition and hyperinsulinemia: a study in nondiabetic and diabetic obese women. Int J Obes 24(12):1600–1607. https://doi.org/10.1038/sj.ijo.0801459

    CAS  Article  Google Scholar 

  31. Candiloros H, Zeghari N, Ziegler O, Donner M, Drouin P (1996) Hyperinsulinemia is related to erythrocyte phospholipid composition and membrane fluidity changes in obese nondiabetic women. J Clin Endocrinol Metab 81(8):2912–2918. https://doi.org/10.1210/jcem.81.8.8768851

    CAS  Article  PubMed  Google Scholar 

  32. Kjellqvist S, Klose C, Surma MA, Hindy G, Mollet IG, Johansson A (2016) Identification of shared and unique serum lipid profiles in diabetes mellitus and myocardial infarction. JAHA 5(12):e004503. https://doi.org/10.1161/JAHA.116.004503

    Article  PubMed Central  PubMed  Google Scholar 

  33. Suvitaival T, Bondia-Pons I, Yetukuri L, Pöhö P, Nolan JJ, Hyötyläinen T, Kuusisto J, Orešič M (2018) Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 78:1–12. https://doi.org/10.1016/j.metabol.2017.08.014

    CAS  Article  PubMed  Google Scholar 

  34. Morand OH, Zoeller RA, Raetz CR (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem 263(23):11597–11606

    CAS  Article  PubMed  Google Scholar 

  35. Khaselev N, Murphy RC (1999) Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic Biol Med 26(3–4):275–284. https://doi.org/10.1016/S0891-5849(98)00211-1

    CAS  Article  PubMed  Google Scholar 

  36. Maeba R, Sawada Y, Shimasaki H, Takahashi I, Ueta N (2002) Ethanolamine plasmalogens protect cholesterol-rich liposomal membranes from oxidation caused by free radicals. Chem Phys Lipids 120(1–2):145–151. https://doi.org/10.1016/S0009-3084(02)00101-9

    CAS  Article  PubMed  Google Scholar 

  37. Skaff O, Pattison DI, Davies MJ (2008) The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study. Biochemistry 47(31):8237–8245. https://doi.org/10.1021/bi800786q

    CAS  Article  PubMed  Google Scholar 

  38. Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T (2011) Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med 50(7):892–898. https://doi.org/10.1016/j.freeradbiomed.2011.01.002

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  39. Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3):456–480. https://doi.org/10.4239/wjd.v6.i3.456

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fuchs B (2014) Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 406(5):1291–1306. https://doi.org/10.1007/s00216-013-7534-5

    CAS  Article  PubMed  Google Scholar 

  41. Fang L, Harkewicz R, Hartvigsen K, Wiesner P, Choi SH, Almazan F, Pattison J, Deer E, Sayaphupha T, Dennis EA, Witztum JL, Tsimikas S, Miller YI (2010) Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. J Biol Chem 285(42):32343–32351. https://doi.org/10.1074/jbc.M110.137257

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  42. Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH (2012) The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf) 76(5):674–682. https://doi.org/10.1111/j.1365-2265.2011.04244.x

    CAS  Article  Google Scholar 

  43. Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, Xu G (2005) Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77(13):4108–4116. https://doi.org/10.1021/ac0481001

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Maika Nariai and Hiroko Abe. The first draft of the manuscript was written by Maika Nariai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maika Nariai.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of Chiba University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nariai, M., Abe, H., Hoshioka, Y. et al. Biomarker profiling of postmortem blood for diabetes mellitus and discussion of possible applications of metabolomics for forensic casework. Int J Legal Med 136, 1075–1090 (2022). https://doi.org/10.1007/s00414-021-02767-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02767-w

Keywords

  • Diabetes mellitus
  • Metabolomics
  • Biomarker
  • Phospholipids
  • Plasmalogen
  • Liquid chromatography-mass spectrometry