Chen L, Magliano DJ, Zimmet PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol 8(4):228–236. https://doi.org/10.1038/nrendo.2011.183
CAS
Article
PubMed
Google Scholar
Palmiere C (2015) Postmortem diagnosis of diabetes mellitus and its complications. Croat Med J 56(3):181–193. https://doi.org/10.3325/cmj.2015.56.181
CAS
Article
PubMed Central
PubMed
Google Scholar
Palmiere C, Mangin P (2012) Postmortem chemistry update part I. Int J Legal Med 126(6):187–198. https://doi.org/10.1007/s00414-011-0625-y
Article
PubMed
Google Scholar
Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, Lambert M, Lapierre P, Potier E (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18(3):193–216
CAS
PubMed
Google Scholar
Winecker RE, Hammett-Stabler CA, Chapman JF, Ropero-Miller JD (2002) HbA1c as a postmortem tool to identify glycemic control. J Forensic Sci 47(6):1373–1379
CAS
Article
PubMed
Google Scholar
Khuu HM, Robinson CA, Goolsby K, Hardy RW, Konrad RJ (1999) Evaluation of a fully automated high-performance liquid chromatography assay for hemoglobin A1c. Arch Pathol Lab Med 123(9):763–767. https://doi.org/10.5858/1999-123-0763-EOAFAH
CAS
Article
PubMed
Google Scholar
Lipska KJ, Warton EM, Huang ES, Moffet HH, Inzucchi SE, Krumholz HM, Karter AJ (2013) HbA1c and risk of severe hypoglycemia in type 2 diabetes. Diabetes Care 36(11):3535–3542. https://doi.org/10.2337/dc13-0610
CAS
Article
PubMed Central
PubMed
Google Scholar
Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS ONE 7(7):e40459. https://doi.org/10.1371/journal.pone.0040459
CAS
Article
PubMed Central
PubMed
Google Scholar
Thomas A, Déglon J, Lenglet S, Mach F, Mangin P, Wolfender JL, Steffens S, Staub C (2010) High-throughput phospholipidic fingerprinting by online desorption of dried spots and quadrupole-linear ion trap mass spectrometry: evaluation of atherosclerosis biomarkers in mouse plasma. Anal Chem 82(15):6687–6694. https://doi.org/10.1021/ac101421b
CAS
Article
PubMed
Google Scholar
Ogawa S, Hattori K, Sasayama D, Yokota Y, Matsumura R, Matsuo J, Ota M, Hori H, Teraishi T, Yoshida S, Noda T, Ohashi Y, Sato H, Higuchi T, Motohashi N, Kunugi H (2015) Reduced cerebrospinal fluid ethanolamine concentration in major depressive disorder. Sci Rep 5:7796. https://doi.org/10.1038/srep07796
CAS
Article
PubMed Central
PubMed
Google Scholar
Adachi J, Matsushita S, Yoshioka N, Funae R, Fujita T, Higuchi S, Ueno Y (2004) Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in alcoholic patients. J Lipid Res 45(5):961–971. https://doi.org/10.1194/jlr.M400008-JLR200
CAS
Article
Google Scholar
Hammad LA, Wu G, Saleh MM, Klouckova I, Dobrolecki LE, Hickey RJ, Schnaper L, Novotny MV, Mechref Y (2009) Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun Mass Spectrom 23(6):863–876. https://doi.org/10.1002/rcm.3947
CAS
Article
PubMed
Google Scholar
Haines NR, Manoharan N, Olson JL, D’Alessandro A, Reisz JA (2018) Metabolomics analysis of human vitreous in diabetic retinopathy and rhegmatogenous retinal detachment. J Proteome Res 17(7):2421–2427. https://doi.org/10.1021/acs.jproteome.8b00169
CAS
Article
PubMed
Google Scholar
Barnes VM, Kennedy AD, Panagakos F, Devizio W, Trivedi HM, Jönsson T, Guo L, Cervi S, Scannapieco FA (2014) Global metabolomic analysis of human saliva and plasma from healthy and diabetic subjects, with and without periodontal disease. PLoS One 18;9(8):e105181. https://doi.org/10.1371/journal.pone.0105181
CAS
Article
Google Scholar
Abe H, Yajima D, Hoshioka Y, Nara A, Nagasawa S, Iwase H (2017) Myoglobinemia markers with potential applications in forensic sample analysis: lipid markers in myoglobinemia for postmortem blood. Int J Legal Med 131(6):1739–1746. https://doi.org/10.1007/s00414-017-1657-8
Article
PubMed
Google Scholar
van Ginneken V, Verheij E, Hekman M, van der Greef J (2017) Characterization of the lipid profile post mortem for type-2 diabetes in human brain and plasma of the elderly with LCMS-techniques: a descriptive approach of diabetic encephalopathy. Integr Mol Med 4(2):1–10. https://doi.org/10.15761/IMM.1000278
Article
Google Scholar
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099
CAS
Article
PubMed
Google Scholar
Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinforma 55(1):1–91. https://doi.org/10.1002/cpbi.11
Article
Google Scholar
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Vandergheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526. https://doi.org/10.1038/nmeth.339310.1038/nmeth.3393
CAS
Article
PubMed Central
PubMed
Google Scholar
Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88(16):7946–7958. https://doi.org/10.1021/acs.analchem.6b00770
CAS
Article
PubMed Central
PubMed
Google Scholar
Duan RD, Hertervig E, Nyberg L, Hauge T, Sternby B, Lillienau J, Farooqi A, Nilsson A (1996) Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci 41(9):1801–1806. https://doi.org/10.1007/BF02088748
CAS
Article
PubMed
Google Scholar
Stoffel W (1999) Functional analysis of acid and neutral sphingomyelinases in vitro and in vivo. Chem Phys Lipids 102(1–2):107–121. https://doi.org/10.1016/S0009-3084(99)00079-1
CAS
Article
PubMed
Google Scholar
Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510(7503):58–67. https://doi.org/10.1038/nature13475
CAS
Article
PubMed Central
PubMed
Google Scholar
Hailemariam TK, Huan C, Liu J, Li Z, Roman C, Kalbfeisch M, Bui HH, Peake DA, Kuo MS, Cao G, Wadgaonkar R, Jiang XC (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol 28(8):1519–1526. https://doi.org/10.1161/ATVBAHA.108.168682
CAS
Article
PubMed
Google Scholar
Lou B, Dong J, Li Y, Ding T, Bi T, Li Y, Deng X, Ye D, Jiang XC (2014) Pharmacologic inhibition of sphingomyelin synthase (SMS) activity reduces apolipoprotein-B secretion from hepatocytes and attenuates endotoxin-mediated macrophage inflammation. PLoS ONE 9(7):e102641. https://doi.org/10.1371/journal.pone.0102641
CAS
Article
PubMed Central
PubMed
Google Scholar
Li Z, Fan Y, Liu J, Li Y, Huan C, Bui HH, Kuo MS, Park TS, Cao G, Jiang XC (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32(7):1577–1584. https://doi.org/10.1161/ATVBAHA.112.251538
CAS
Article
PubMed Central
PubMed
Google Scholar
Ohnishi T, Hashizume C, Taniguchi M, Furumoto H, Han J, Gao R, Kinami S, Kosaka T, Okazaki T (2017) Sphingomyelin synthase 2 deficiency inhibits the induction of murine colitis-associated colon cancer. FASEB J 31(9):3816–3830. https://doi.org/10.1096/fj.201601225RR
CAS
Article
PubMed
Google Scholar
Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, Kirwan JP (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58(2):337–343. https://doi.org/10.2337/db08-1228
CAS
Article
PubMed Central
PubMed
Google Scholar
de Mello VD, Lankinen M, Schwab U, Kolehmainen M, Lehto S, Seppanen-Laakso T, Oresic M, Pulkkinen L, Uusitupa M, Erkkila AT (2009) Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52(12):2612–2615. https://doi.org/10.1007/s00125-009-1482-9
CAS
Article
PubMed
Google Scholar
Zeghari N, Younsi M, Meyer L, Donner M, Drouin P, Ziegler O (2000) Adipocyte and erythrocyte plasma membrane phospholipid composition and hyperinsulinemia: a study in nondiabetic and diabetic obese women. Int J Obes 24(12):1600–1607. https://doi.org/10.1038/sj.ijo.0801459
CAS
Article
Google Scholar
Candiloros H, Zeghari N, Ziegler O, Donner M, Drouin P (1996) Hyperinsulinemia is related to erythrocyte phospholipid composition and membrane fluidity changes in obese nondiabetic women. J Clin Endocrinol Metab 81(8):2912–2918. https://doi.org/10.1210/jcem.81.8.8768851
CAS
Article
PubMed
Google Scholar
Kjellqvist S, Klose C, Surma MA, Hindy G, Mollet IG, Johansson A (2016) Identification of shared and unique serum lipid profiles in diabetes mellitus and myocardial infarction. JAHA 5(12):e004503. https://doi.org/10.1161/JAHA.116.004503
Article
PubMed Central
PubMed
Google Scholar
Suvitaival T, Bondia-Pons I, Yetukuri L, Pöhö P, Nolan JJ, Hyötyläinen T, Kuusisto J, Orešič M (2018) Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 78:1–12. https://doi.org/10.1016/j.metabol.2017.08.014
CAS
Article
PubMed
Google Scholar
Morand OH, Zoeller RA, Raetz CR (1988) Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J Biol Chem 263(23):11597–11606
CAS
Article
PubMed
Google Scholar
Khaselev N, Murphy RC (1999) Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic Biol Med 26(3–4):275–284. https://doi.org/10.1016/S0891-5849(98)00211-1
CAS
Article
PubMed
Google Scholar
Maeba R, Sawada Y, Shimasaki H, Takahashi I, Ueta N (2002) Ethanolamine plasmalogens protect cholesterol-rich liposomal membranes from oxidation caused by free radicals. Chem Phys Lipids 120(1–2):145–151. https://doi.org/10.1016/S0009-3084(02)00101-9
CAS
Article
PubMed
Google Scholar
Skaff O, Pattison DI, Davies MJ (2008) The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study. Biochemistry 47(31):8237–8245. https://doi.org/10.1021/bi800786q
CAS
Article
PubMed
Google Scholar
Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T (2011) Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med 50(7):892–898. https://doi.org/10.1016/j.freeradbiomed.2011.01.002
CAS
Article
PubMed Central
PubMed
Google Scholar
Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3):456–480. https://doi.org/10.4239/wjd.v6.i3.456
Article
PubMed Central
PubMed
Google Scholar
Fuchs B (2014) Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 406(5):1291–1306. https://doi.org/10.1007/s00216-013-7534-5
CAS
Article
PubMed
Google Scholar
Fang L, Harkewicz R, Hartvigsen K, Wiesner P, Choi SH, Almazan F, Pattison J, Deer E, Sayaphupha T, Dennis EA, Witztum JL, Tsimikas S, Miller YI (2010) Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. J Biol Chem 285(42):32343–32351. https://doi.org/10.1074/jbc.M110.137257
CAS
Article
PubMed Central
PubMed
Google Scholar
Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH (2012) The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf) 76(5):674–682. https://doi.org/10.1111/j.1365-2265.2011.04244.x
CAS
Article
Google Scholar
Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, Xu G (2005) Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem 77(13):4108–4116. https://doi.org/10.1021/ac0481001
CAS
Article
PubMed
Google Scholar