Skip to main content

Advertisement

Log in

Myoglobinemia markers with potential applications in forensic sample analysis: lipid markers in myoglobinemia for postmortem blood

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The crush syndrome, in which rhabdomyolysis and trauma occur as a result of heat stroke and drug intoxication, can lead to myoglobinemia. This condition can be diagnosed by measuring myoglobin (Mb) levels in blood and urine. However, postmortem Mb levels are unreliable indicators, since blood Mb concentration drastically increases within a very short time after death and urine cannot always be obtained at dissection; this makes it difficult to diagnose myoglobinemia in a corpse. To address this issue, in this study, we used a lipidomics approach to identify markers that can be used to detect myoglobinemia in postmortem blood samples. We found that increases in levels of fatty acid oxides such as stearic, oleic, linoleic, and arachidonic acid and decreases in levels of plasmalogens and phosphatidylethanolamine in the blood were associated with high Mb level. These results demonstrate that postmortem samples are amenable to lipidomics analysis and provide a set of markers other than Mb that can be used for postmortem diagnosis of myoglobinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 7:e40459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thomas A, Déglon J, Lenglet S, Mach F, Mangin P, Wolfender JL, Steffens S, Staub C (2010) High-throughput phospholipidic fingerprinting by online desorption of dried spots and quadrupole-linear ion trap mass spectrometry: evaluation of atherosclerosis biomarkers in mouse plasma. Anal Chem 82:6687–6694

    Article  CAS  Google Scholar 

  3. Ogawa S, Hattori K, Sasayama D, Yokota Y, Matsumura R, Matsuo J, Ota M, Hori H, Teraishi T, Yoshida S, Noda T, Ohashi Y, Sato H, Higuchi T, Motohashi N, Kunugi H (2015) Reduced cerebrospinal fluid ethanolamine concentration in major depressive disorder. Sci Rep 5:7796

  4. Miyazawa T, Suzuki T, Fujimoto K, Kinoshita M (1996) Age-related change of phosphatidylcholine hydroperoxide and phosphatidylethanolamine hydroperoxide levels in normal human red blood cells. Mech Ageing Dev 86:145–150

    Article  CAS  PubMed  Google Scholar 

  5. Adachi J, Matsushita S, Yoshioka N, Funae R, Fujita T, Higuchi S, Ueno Y (2004) Plasma phosphatidylcholine hydroperoxide as a new marker of oxidative stress in alcoholic patients. J Lipid Res 45:961–971

    Article  Google Scholar 

  6. Hammad LA, Wu G, Saleh MM, Klouckova I, Dobrolecki LE, Hickey RJ, Schnaper L, Novotny MV, Mechref Y (2009) Elevated levels of hydroxylated phosphocholine lipids in the blood serum of breast cancer patients. Rapid Commun Mass Spectrom 23:863–876

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Li M, Shan Y, Shen S, Bai Y, Liu H (2016) Recent advances in lipidomics for disease research. J Sep Sci 39:38–50

    Article  CAS  PubMed  Google Scholar 

  8. Piischel K, Lockemanna U, Bartelb J (1995) Postmortem investigation of serum myoglobin levels with special reference to electrical fatalities. Forensic Sci Int 72:171–177

    Article  Google Scholar 

  9. Zhu BL, Ishida K, Quan L, Taniguchi M, Oritani S, Kamikodai Y, Fujita MQ, Maeda H (2001) Post-mortem urinary myoglobin levels with reference to the causes of death. Forensic Sci Int 115:183–188

    Article  CAS  PubMed  Google Scholar 

  10. Moore KP, Holt SG, Patel RP, Svistunenko DA, Zackert W, Goodier D, Reeder BJ, Clozel M, Anand R, Cooper CE, Morrow JD, Wilson MT, Darley-Usmar V, Roberts LJ 2nd (1998) A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem 273:31731–31737

    Article  CAS  PubMed  Google Scholar 

  11. Reeder BJ, Wilson MT (2005) Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease states. Current Med Chem 12:2741–2751

    Article  CAS  Google Scholar 

  12. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  13. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms inhibition, and biological effects. Biochem Biophys Res Comm 338:668–676

    Article  CAS  PubMed  Google Scholar 

  14. Zager RA, Foerder CA (1992) Effects of inorganic iron and myoglobin on in vitro proximal tubular lipid peroxidation and cytotoxicity. J Clin Invest 89:989–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Billings FT 4th, Ball SK, Roberts LJ 2nd, Pretorius M (2011) Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med 50:1480–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holt S, Reeder B, Wilson M, Harvey S, Morrow JD, Roberts LJ 2nd, Moore K (1999) Increased lipid peroxidation in patients with rhabdomyolysis. Lancet 353:1241

    Article  CAS  PubMed  Google Scholar 

  17. Spiteller P, Spiteller G (1997) 9-Hydroxy-10,12-octadecadienoic acid (9-HODE) and 13-hydroxy-9,11-octadecadienoic acid (13-HODE): excellent markers for lipid peroxidation. Chem Phys Lipids 89:131–139

    Article  CAS  Google Scholar 

  18. Jira W, Spiteller G, Carson W, Schramm A (1998) Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem Phys Lipids 91:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Manini P, Briganti S, Fabbri C, Picardo M, Napolitano A, d’Ischia M (2006) Free radical oxidation of 15-(S)-hydroxyeicosatetraenoic acid with the Fenton reagent: characterization of an epoxy-alcohol and cytotoxic 4-hydroxy-2E-nonenal from the heptatrienyl radical pathway. Chem Phys Lipids 142:14–22

    Article  CAS  PubMed  Google Scholar 

  20. Zommara M, Tachibana N, Mitsui K, Nakatani N, Sakono M, Ikeda I, Imaizumi K (1995) Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic Biol Med 18:599–602

    Article  CAS  PubMed  Google Scholar 

  21. Sindelar PJ, Guan Z, Dallner G, Ernster L (1999) The protective role of plasmalogens in iron-induced lipid peroxidation. Free Rad Biol Med 26:318–324

    Article  CAS  PubMed  Google Scholar 

  22. Stadelmann-Ingrand S, Favreliere S, Fauconneau B, Mauco G, Tallineau C (2001) Plasmalogen degradation by oxidative stress: production and disappearance of specific fatty aldehydes and fatty α-hydroxyaldehydes. Free Rad Biol Med 31:1263–1271

    Article  CAS  PubMed  Google Scholar 

  23. Hara S, Kanda A (2006) Anti-oxidative activity of tocopherol for functional polyunsaturated lipid under various oxidation conditions. J Fac Sci Tech Seikei Univ 43:95–101

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Abe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, H., Yajima, D., Hoshioka, Y. et al. Myoglobinemia markers with potential applications in forensic sample analysis: lipid markers in myoglobinemia for postmortem blood. Int J Legal Med 131, 1739–1746 (2017). https://doi.org/10.1007/s00414-017-1657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1657-8

Keywords

Navigation