Skip to main content

Advertisement

Log in

DNA methylation of decedent blood samples to estimate the chronological age of human remains

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Chronological age estimation may offer valuable investigative leads in human identification cases. Bisulfite pyrosequencing analysis of single CpG sites on five genes (KLF14, ELOVL2, C1orf132, TRIM59, and FHL2) was performed on 264 postmortem blood samples from individuals aged 3 months to 93 years. The goals were to develop age prediction models based on the correlation between the methylation profile and chronological age and to assess the accuracy of the prediction. Linear regression between methylation levels and age at each CpG site revealed that the five markers show a statistically significant correlation with age. The methylation data from a training set of 160 postmortem blood samples were used to develop an age prediction model with a correlation coefficient of 0.65, explaining 73.1% of age variation, with a mean absolute deviation from the chronological age of 7.60 years. The accuracy of the model was evaluated with a test set of 72 samples producing a mean absolute deviation of 7.42 years. The training and test sets were also categorized by specific age groups to assess accuracy and deviation from chronological age. The data for both sets revealed a lower prediction potential as an individual increases in age, particularly for the age categories above 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data is available upon request.

Code availability

Not applicable.

References

  1. Lee H, Jung S, Lee E, Yang W, Shin K (2016) DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Sci Int Genet 24:75–82. https://doi.org/10.1016/j.fsigen.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Vidaki A, Kayser M (2018) Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 37:180–195. https://doi.org/10.1016/j.fsigen.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  3. Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Ther 195:172–185. https://doi.org/10.1016/j.pharmthera.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  4. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2(3):245–261. https://doi.org/10.1016/s1568-1637(03)00010-2

    Article  CAS  PubMed  Google Scholar 

  5. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PloS Genet 5(8):e1000602. https://doi.org/10.1371/journal.pgen.1000602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koch CM, Wagner W (2011) Epigenetic-aging-signature to determine age in different tissues. Aging 23(10):1018–1027. https://doi.org/10.18632/aging.100395

    Article  Google Scholar 

  7. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D et al (2012) Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 11:1132–1134. https://doi.org/10.1111/acel.12005

    Article  CAS  PubMed  Google Scholar 

  8. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Weidner C, Lin Q, Koch C, Eisele L, Beier F, Ziegler P et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15(2):R24. https://doi.org/10.1186/gb-2014-15-2-r24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H (2013) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23(5):1186–1201. https://doi.org/10.1093/hmg/ddt531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S et al (2011) Epigenetic predictor of age. PLoS One 6:e14821. https://doi.org/10.1371/journal.pone.0014821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eipel M, Mayer F, Arent T, Ferreira MR, Birkhofer C, Gerstenmaier U et al (2016) Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging 8:1034–1048. https://doi.org/10.18632/aging.100972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hong S, Jung S, Lee E, Shin K, Yang W, Lee H (2017) DNA methylation-based age prediction from saliva: high age predictability by a combination of 7 CpG markers. Forensic Sci Int Genet 29:118–125. https://doi.org/10.1016/j.fsigen.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M, Chong S et al (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20(6):1164–1172. https://doi.org/10.1093/hmg/ddq561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K et al (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13(10):R97. https://doi.org/10.1186/gb-2012-13-10-r97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD et al (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14:R102. https://doi.org/10.1186/gb-2013-14-9-r102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slieker R, Relton C, Gaunt SP, Heijmans B (2018) Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chromatin 11:25. https://doi.org/10.1186/s13072-018-0191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Freire-Aradas A, Philips C, Lareu M (2017) Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci Rev 29(2):121–144

    CAS  PubMed  Google Scholar 

  20. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89. https://doi.org/10.1006/abio.1996.0432

    Article  CAS  PubMed  Google Scholar 

  21. Colella S, Shen L, Baggerly KA, Issa PJJ, Krahe R (2003) Sensitive and quantitative universal PyrosequencingTM methylation analysis of CpG sites. Biotechniques 35(1):146–150. https://doi.org/10.2144/03351md01

    Article  CAS  PubMed  Google Scholar 

  22. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protocols 2:2265–2275. https://doi.org/10.1038/nprot.2007.314

    Article  CAS  PubMed  Google Scholar 

  23. Delaney C, Garg SK, Yung R (2015) Analysis of DNA methylation by pyrosequencing. Methods Mol Biol 1343:249–264. https://doi.org/10.1007/978-1-4939-2963-4_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zbieć-Piekarska R, Spólnicka M, Kupiec T, Parys-Proszek A, Makowska Ż, Pałeczka A et al (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  25. Cho S, Jung SE, Hong SR, Lee EH, Lee JH, Lee SD et al (2017) Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci Int Genet 29:250–256. https://doi.org/10.1016/j.fsigen.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  26. Bekaert B, Kamalandua A, Zapico SC, Van de Voorde W, Decorte R (2015) Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10(10):922–930. https://doi.org/10.1080/15592294.2015.1080413

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hamano Y, Manabe S, Morimoto C, Fujimoto S, Ozeki M, Tamaki K (2016) Forensic age prediction for dead or living samples by use of methylation-sensitive high resolution melting. Leg Med 21:5–10. https://doi.org/10.1016/j.legalmed.2016.05.001

    Article  CAS  Google Scholar 

  28. Naue J, Hoefsloot H, Mook O, Rijlaarsdam-Hoekstra L, van der Zwalm M, Henneman P et al (2017) Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression. Forensic Sci Int Genet 31:19–28. https://doi.org/10.1016/j.fsigen.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  29. Correia Dias H, Cordeiro C, Corte Real F, Cunha E, Manco L (2019) Age estimation based on DNA methylation using blood samples from deceased individuals. J Forensic Sci 65(2):465–470. https://doi.org/10.1111/1556-4029.14185

    Article  CAS  PubMed  Google Scholar 

  30. Chan YH (2003) Biostatistics 104: correlational analysis. Singap Med J 44(12):614–619

    CAS  Google Scholar 

  31. Zbieć-Piekarska R, Spólnicka M, Kupiec T, Makowska Ż, Spas A, Parys-Proszek A et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  32. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE et al (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25. https://doi.org/10.1186/s13059-015-0584-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pavanello S, Campisi M, Tona F, Lin CD, Iliceto S (2019) Exploring epigenetic age in response to intensive relaxing training: a pilot study to slow down biological age. Int J Environ Res Public Health 16(17):3074. https://doi.org/10.3390/ijerph16173074

    Article  CAS  PubMed Central  Google Scholar 

  34. Jovanovic T, Vance LA, Cross D, Knight AK, Kilaru V, Michopoulos V et al (2017) Exposure to violence accelerates epigenetic aging in children. Sci Rep 7(1):8962. https://doi.org/10.1038/s41598-017-09235-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hughes A, Smart M, Gorrie-Stone T, Hannon E, Mill J, Bao Y et al (2018) Socioeconomic position and DNA methylation age acceleration across the life course. Am J Epidemiol 187:2346–2354. https://doi.org/10.1093/aje/kwy155

    Article  PubMed  PubMed Central  Google Scholar 

  36. Austin MK, Chen E, Ross KM, McEwen LM, Maclsaac JL, Kobor MS et al (2018) Early-life socioeconomic disadvantage, not current, predicts accelerated epigenetic aging of monocytes. Psychoneuroendocrinology 97:131–134. https://doi.org/10.1016/j.psyneuen.2018.07.007

    Article  PubMed  Google Scholar 

  37. Fiorito G, McCrory C, Robinson O, Carmeli C, Rosales CO, Zhang Y et al (2019) Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging 11(7):2045–2070. https://doi.org/10.18632/aging.101900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A et al (2018) Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease. Alzheimers Dement (Amst) 10:429–437. https://doi.org/10.1016/j.dadn.2018.05.006

    Article  Google Scholar 

  39. Rosen AD, Robertson KD, Hlady RA, Muench C, Lee J, Philibert R et al (2018) DNA methylation age is accelerated in alcohol dependence. Transl Psychiatry 8(1):182. https://doi.org/10.1038/s41398-018-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lévesque KF, Casey M, Szyf E, Ismaylova V, Ly MP, Verner M et al (2014) Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics 9(10):1410–1421. https://doi.org/10.4161/15592294.2014.970060

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fleckhaus J, Freire-Aradas A, Rothschild M, Schneider P (2017) Impact of genetic ancestry on chronological age prediction using DNA methylation analysis. Forensic Sci Int Genet Suppl Ser 6:e399–e400

    Article  Google Scholar 

  42. Tajuddin SM, Hernandez DG, Chen BH, Noren Hooten N, Mode NA, Nalls MA et al (2019) Novel age-associated DNA methylation changes and epigenetic age acceleration in middle-aged African Americans and whites. Clin Epigenetics 11(1):119. https://doi.org/10.1186/s13148-019-0722-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thurston RC, Carroll JE, Levine M, Chang Y, Crandall C, Manson JE et al (2020) Vasomotor symptoms and accelerated epigenetic aging in the Women’s Health Initiative (WHI). J Clin Endocrinol Metab 105(4):1221–1227. https://doi.org/10.1210/clinem/dgaa081

    Article  PubMed Central  Google Scholar 

  44. Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H et al (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17(1):171. https://doi.org/10.1186/s13059-016-1030-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spolnicka M, Pospiech E, Peplonska B, Zbiec-Piekarska R, Makowska Z, Pieta A et al (2017) DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. Int J Legal Med 132:1–11. https://doi.org/10.1007/s00414-017-1636-0

    Article  PubMed  PubMed Central  Google Scholar 

  46. Spolnicka M, Zbiec-Piekarska R, Karp M, Machnicki MM, Wlasiuk P, Makowska Z et al (2018) DNA methylation signature in blood does not predict calendar age in patients with chronic lymphocytic leukemia but may alert to the presence of disease. Forensic Sci Int Genet 34:e15–e17. https://doi.org/10.1016/j.fsigen.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  47. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H (2016) Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics 8:64. https://doi.org/10.1186/s13148-016-0228-z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zheng Y, Joyce BT, Colicino E, Liu L, Zhang W, Dai Q et al (2016) Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine 5:68–73. https://doi.org/10.1016/j.ebiom.2016.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ambatipudi S, Horvath S, Perrier F, Cuenin C, Hernandez-Vargas H, Le Calvez-Kelm F et al (2017) DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer 75:299–307. https://doi.org/10.1016/j.ejca.2017.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S (2015) DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging 7(9):690–700. https://doi.org/10.18632/aging.100809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Durso DF, Bacalini MG, Sala C, Pirazzini C, Marasco E, Bonafé M et al (2017) Acceleration of leukocytes’ epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget 8(14):23237–23245. https://doi.org/10.18632/oncotarget.15573

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

From the Los Angeles County Department of Medical Examiner-Coroner, the authors thank Dr Ruby Javed-Ghaffar, Chief of the Forensic Laboratories; Mr Eric Wahoske, previous supervisor of the Human Genomics Unit; and Sarah de Quintana, Chair of the Research and Publication Committee during this project, for providing approval for the use of postmortem blood samples. We also thank DNA analysts Oscar Pleitez and Naomi Weisz for facilitating the extracted postmortem blood samples. The authors extend thanks to Qiagen for supplying reagents and for the scientific collaboration by Sim Winitz and John Haley in providing training and data review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Roberts.

Ethics declarations

Ethics declarations

The LACDoME-C Research Committee approved this study before initiating the research. The use of decedent samples is permitted to validate new technologies and analysis methods at the LACDoME-C. The results for all samples utilized in this study were reported without personal identifying information (PII) other than the decedent’s age.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yessenia Anaya and Patrick Yew are co-first authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya, Y., Yew, P., Roberts, K.A. et al. DNA methylation of decedent blood samples to estimate the chronological age of human remains. Int J Legal Med 135, 2163–2173 (2021). https://doi.org/10.1007/s00414-021-02650-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02650-8

Keywords

Navigation