Skip to main content
Log in

Modeling microbial ethanol production by S. aureus, K. pneumoniae, and E. faecalis under aerobic/anaerobic conditions — applicability to laboratory cultures and real postmortem cases

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

A Correction to this article was published on 28 August 2021

This article has been updated

Abstract

A quite intriguing subject being intensively researched in the forensic toxicology field is the source of postmortem determined blood ethanol concentration: antemortem ingestion or postmortem microbial production. Our previous research on microbial ethanol production has reported a quantitative relationship between the ethanol and the higher alcohols and 1-butanol produced by Escherichia coli, Clostridium perfrigens, and Clostridium sporogenes. In this contribution, we continue our research reporting on the following: (i) the patterns of ethanol, higher alcohols, and 1-butanol production by the microbes Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (all being aerobic/facultative anaerobic species, common corpse’s colonizers, and ethanol producers), under controlled laboratory conditions, (ii) the mathematical modeling, with simple mathematical equations, of the correlation between ethanol concentration and the other studied alcohols’ concentrations, by performing multiple linear regression analysis of the results, and (iii) the applicability of the constructed models in microbial cultures developed under different temperature than that used to build the models, in denatured blood cultures and in real postmortem cases. The aforementioned alcohols were proved to be all indicators of ethanol production, both in qualitative and quantitative terms. 1-Propanol was the most significant alcohol in modeling microbial ethanol production, followed by methyl-butanol. The K. pneumoniae’s models achieved the best scoring in applicability (E < 40%) compared to the S. aureus and E. faecalis models, both at laboratory microbial cultures at 37 °C and real postmortem cases. Overall, a noteworthy accuracy in estimating the microbial ethanol in cultures and autopsy blood is achieved by the employed simple linear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Skopp G (2004) Preanalytic aspects in postmortem toxicology. Forensic Sci Int 142:75–100. https://doi.org/10.1016/j.forsciint.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  2. Ziavrou K, Boumba VA, Vougiouklakis T (2005) Insights into the origin of postmortem ethanol. Int J Toxicol 24:69–77. https://doi.org/10.1080/10915810590936391

    Article  CAS  PubMed  Google Scholar 

  3. Kugelberg FC, Jones AW (2007) Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int 165:10–29. https://doi.org/10.1016/j.forsciint.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  4. Skopp G (2010) Postmortem toxicology. Forensic Sci Med Pathol 6:314–325. https://doi.org/10.1007/s12024-010-9150-4

    Article  CAS  PubMed  Google Scholar 

  5. Rodda LN, Beyer J, Gerostamoulos D, Drummer OH (2013) Alcohol congener analysis and the source of alcohol: a review. Forensic Sci Med Pathol 9:194–207. https://doi.org/10.1007/s12024-013-9411-0

    Article  PubMed  Google Scholar 

  6. Cowan DM, Maskrey JR, Fung ES, Woods TA, Stabryla LM, Scott PK, Finley BL (2016) Best-practices approach to determination of blood alcohol concentration (BAC) at specific time points: combination of ante-mortem alcohol pharmacokinetic modeling and post-mortem alcohol generation and transport considerations. Regul Toxicol Pharmacol 78:24–36. https://doi.org/10.1016/j.yrtph.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  7. Lin Z, Wang H, Jones AW, Wang F, Zhang Y, Rao Y (2020) Evaluation and review of ways to differentiate sources of ethanol in postmortem blood. Int J Legal Med 134:2081–2093. https://doi.org/10.1007/s00414-020-02415-9

    Article  PubMed  Google Scholar 

  8. Corry JEL (1978) Possible sources of ethanol ante- and postmortem: its relation to the biochemistry and microbiology decomposition. J Appl Bacteriol 44:1–56. https://doi.org/10.1111/j.1365-2672.1978.tb00776.x

    Article  CAS  PubMed  Google Scholar 

  9. Morris JA, Harrison LM, Partridge SM (2006) Post mortem bacteriology: a re-evaluation. J Clin Pathol 59:1–9. https://doi.org/10.1136/jcp.2005.028183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boumba VA, Ziavrou K, Vougiouklakis T (2008) Biochemical pathways generating post-mortem-volatile compounds co-detected during forensic ethanol analysis. Forensic Sci Int 174:133–151. https://doi.org/10.1016/j.forsciint.2007.03.018

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira M, Amorim A (2018) Microbial forensics: new breakthroughs and future prospects. Appl Microbiol Biotechnol 102:10377–10391. https://doi.org/10.1007/s00253-018-9414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boumba VA, Economou V, Kourkoumelis N, Gousia P, Papadopoulou C, Vougiouklakis T (2012) Microbial ethanol production: experimental study and multivariate evaluation. Forensic Sci Int 215:189–198. https://doi.org/10.1016/j.forsciint.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Boumba VA, Kourkoumelis N, Gousia P, Economou V, Papadopoulou C, Vougiouklakis T (2013) Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures. Forensic Sci Int 232:191–198. https://doi.org/10.1016/j.forsciint.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  14. Ryan KJ, Ray CG (Eds.) (2004) Sherris Medical Microbiology, 4th ed., McGraw Hill, New York.

  15. MacFaddin JF (1985) Media for the isolation-cultivation-identification-maintenance of medial bacteria. vol. I. Williams & Wilkins, Baltimore. https://doi.org/10.1002/jobm.3620260414

  16. Vazquez R, Larson DF (2013) Plasma protein denaturation with graded heat exposure. Perfusion 28:557–559. https://doi.org/10.1177/0267659113498921

    Article  CAS  PubMed  Google Scholar 

  17. Paczkowski S, Schutz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91:917–935. https://doi.org/10.1007/s00253-011-3417-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jones AW, Hylen L, Svensson Ε, Helander Α (1999) Storage of specimens at 4°C or addition of sodium fluoride (1%) prevents formation of ethanol in urine inoculated with Candida albicans. J Anal Toxicol 23:333–336. https://doi.org/10.1093/jat/23.5.333

    Article  CAS  PubMed  Google Scholar 

  19. Saukko P, Knight B (2004) The pathophysiology of death. In: Saukko P, Knight B (ed) Knight's Forensic Pathology, 3rd edn. Oxford University Press Inc., London, pp 52-97. https://doi.org/10.1201/b13642

  20. Bos LDJ, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9(5):e1003311. https://doi.org/10.1371/journal.ppat.1003311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boumba VA, Kourkoumelis N, Ziavrou K, Vougiouklakis T (2019) Estimating a reliable cutoff point of 1-propanol in postmortem blood as marker of microbial ethanol production. J Forensic Sci Med 5:141–146. https://doi.org/10.4103/jfsm_8_19

    Article  Google Scholar 

  22. Boumba VA (2020) Commentary on the article of Wang H, Li J, Huang Z, Wang F, Zhang Y, Chang J, Rao Y (2020) Assessment of the role played by n-propanol in distinction of ethanol source in postmortem blood with the assistance of ethyl glucuronide and ethyl sulfate. Forensic Toxicol 38:195–202. Forensic Toxicol 38:529–530. https://doi.org/10.1007/s11419-019-00507-9

    Article  CAS  Google Scholar 

  23. Wang H, Li J, Huang Z, Wang F, Zhang Y, Chang J, Rao Y (2019) Assessment of the role played by n-propanol in distinction of ethanol source in postmortem blood with the assistance of ethyl glucuronide and ethyl sulfate. Forensic Toxicol 38:195–202. https://doi.org/10.1007/s11419-019-00507-9

    Article  CAS  Google Scholar 

  24. Liang H, Kuang S, Guo L, Yu T, Rao Y (2016) Assessment of the role played by N-propanol found in postmortem blood in the discrimination between antemortem consumption and postmortem formation of ethanol using rats. J Forensic Sci 61:122–126. https://doi.org/10.1111/1556-4029.12921

    Article  CAS  PubMed  Google Scholar 

  25. Leikin JB, Watson WA (2003) Post-mortem toxicology: what the dead can and cannot tell us. J Toxicol Clin Toxicol 41:47–56. https://doi.org/10.1081/clt-120018270

    Article  CAS  PubMed  Google Scholar 

  26. Flanagan RJ, Connally G (2005) Interpretation of analytical toxicology results in life and at postmortem. Toxicol Rev 24:51–62. https://doi.org/10.2165/00139709-200524010-00004

    Article  CAS  PubMed  Google Scholar 

  27. Velivasi G, Sakkas I, Kourkoumelis N, Boumba VA (2021) Modeling postmortem ethanol production by C. albicans: experimental study and multivariate evaluation. Forensic Sci Int. 324 https://doi.org/10.1016/j.forsciint.2021.110809

  28. Ceciliason AS, Andersson MG, Lundin E, Sandler H (2020) Microbial neoformation of volatiles: implications for the estimation of post-mortem interval in decomposed human remains in an indoor setting. Int J Legal Med. https://doi.org/10.1007/s00414-020-02436-4

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Zhang X, Li J, Huang Z, Lin Z, Wang J, Zhang C, Rao Y (2018) Stability of ethyl glucuronide, ethyl sulfate, phosphatidylethanols and fatty acid ethyl esters in postmortem human blood. J Anal Toxicol 42:346–352. https://doi.org/10.1093/jat/bky010

    Article  CAS  PubMed  Google Scholar 

  30. Borucki K, Schreiner R, Dierkes J, Jachau K, Krause D, Westphal S, Wurst FM, Luley C, Schmidt-Gayk H (2005) Detection of recent ethanol intake with new markers: comparison of fatty acid ethyl esters in serum and of ethyl glucuronide and the ratio of 5-hydroxytryptophol to 5-hydroxyindole acetic acid in urine. Alcohol Clin Exp Res 29:781–787. https://doi.org/10.1097/01.alc.0000164372.67018.ea

    Article  CAS  PubMed  Google Scholar 

  31. Wozniak MK, Wiergowski M, Namiesnik J, Biziuk M (2019) Biomarkers of alcohol consumption in body fluids-possibilities and limitations of application in toxicological analysis. Curr Med Chem 26:177–196. https://doi.org/10.2174/0929867324666171005111911

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Program “Human Resources Development, Education and Lifelong Learning 2014–2020” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research-2nd Cycle” (MIS-5000432), implemented by the State Scholarships Foundation (IKY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliki A. Boumba.

Ethics declarations

According to the IJLM guidelines.

Ethical approval

Not required.

Informed consent

All authors contributed to the submission and gave informed consent to the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Originally, the article has been published online with error in author name. Iraklis Sakkas should be corrected to Hercules Sakkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velivasi, G., Kourkoumelis, N., Sakkas, H. et al. Modeling microbial ethanol production by S. aureus, K. pneumoniae, and E. faecalis under aerobic/anaerobic conditions — applicability to laboratory cultures and real postmortem cases. Int J Legal Med 135, 2555–2565 (2021). https://doi.org/10.1007/s00414-021-02638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02638-4

Keywords

Navigation