Skip to main content

Advertisement

Log in

Postmortem toxicology

  • Continuing Medical Education Review
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Results from toxicological analyses in death investigations are used to determine whether foreign substances were a cause of death, whether they contributed to death, or whether they caused impairment. Drug concentrations are likely to change during pre-terminal stages due to altered pharmacokinetics, to treatment during resuscitation or in the intensive care unit, to concomitant illness or to the presence of drug tolerance. The potential for postmortem changes must be considered in all but a few drugs. Formation of new entities as well as degradation of drugs may occur, especially in putrefied corpses; in addition, body fluids and tissues may be severely affected by autolysis and putrefaction. Specimens should be selected based on individual case history and on their availability. Analytical procedures should be performed in accordance with a proper quality assurance program for toxicological investigations. Problems are most likely to occur during the isolation and identification of a drug. Interpretation of analytical results is often limited by the inadequate information provided in a particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Madea R, Dettmeyer R, unter Mitarbeit von Mußhoff F. Basiswissen Rechtsmedizin. Berlin, Heidelberg: Springer; 2007. pp. 182–217.

  2. Skopp G. Preanalytic aspects in post-mortem toxicology. Forensic Sci Int. 2004;142:75–100.

    Article  CAS  PubMed  Google Scholar 

  3. Jones GR. Interpretation of post-mortem drug levels. In: Karch SB, editor. Drug abuse handbook. Boca Raton: CRC Press; 1998. p. 970–85.

    Google Scholar 

  4. Tiess D. Asservierung, Exhumierung, Thanatochemie. In: Madea B, Brinkmann B (Hrsg). Handbuch gerichtliche Medizin, Bd. 2. Berlin, Heidelberg, New York: Springer. pp. 70–88.

  5. Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons, vol. 1 and 2. 3rd ed. London, Chicago: Pharmaceutical Press; 2004.

    Google Scholar 

  6. Kugelberg FC, Holmgren A, Eklund A, Jones AW. Forensic toxicology findings in deaths involving gamma-hydroxybutyrate. Int J Legal Med. 2008. doi:10.1007s00414-008-0299-2.

  7. Drug Interaction Database. www.druginteractioninfo.org.

  8. Drummer OH. Requirements for bioanalytical procedures in postmortem toxicology. Anal Bioanal Chem. 2007;388:1495–503.

    Article  CAS  PubMed  Google Scholar 

  9. Ferner RE. Post-mortem clinical pharmacology. Br J Clin Pharmacol. 2008;66:430–43.

    Article  CAS  PubMed  Google Scholar 

  10. Richardson T. Pitfalls in forensic toxicology. Ann Clin Biochem. 2000;37:20–44.

    Article  CAS  PubMed  Google Scholar 

  11. Baselt RC. Disposition of toxic drugs and chemicals. In: Man, 7th ed. Foster City: Biomedical Publications; 2004.

  12. Flanagan RJ, Connally G, Evans JM. Analytical toxicology. Guidelines for sample collection post-mortem. Toxicol Rev. 2005;24:63–71.

    Article  CAS  PubMed  Google Scholar 

  13. Leikin JB, Watson WA. Post-mortem toxicology: what the dead can and cannot tell us. J Toxicol Clin Toxicol. 2003;41:47–56.

    Article  CAS  PubMed  Google Scholar 

  14. Pelissier-Alicot AL, Gaulier JM, Champsaur P, Marquet P. Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol. 2003;27:533–44.

    CAS  PubMed  Google Scholar 

  15. Morris JA, Harrison LM, Partridge SM. Postmortem bacteriology: a re-evaluation. J Clin Pathol. 2006;59:1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Boumba VA, Ziavrou KS, Vougiousklakis T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analysis. Forensic Sci Int. 2008;174:133–51.

    Article  CAS  PubMed  Google Scholar 

  17. Høiseth G, Karinen R, Johnsen L, Normann PT, Christophersen AS, Mørland J. Disappearance of ethyl glucuronide during heavy putrefaction. Forensic Sci Int. 2008;176:147–51.

    Article  PubMed  Google Scholar 

  18. Maurer HH. Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicology. Anal Bioanal Chem. 2007;388:1315–25.

    Article  CAS  PubMed  Google Scholar 

  19. Kugelberg FC, Jones AW. Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int. 2007;165:10–29.

    Article  CAS  PubMed  Google Scholar 

  20. Ludewig R. Akute Vergiftungen. Ratgeber zur Erkennung, Verlauf, Behandlung und Verhütung toxikologischer Notfälle. Stuttgart: 9. Aufl., Wissenschaftliche Verlagsgesellschaft mbH; 1999. pp. 31–37.

  21. Gesellschaft für Toxikologische und Forensische Chemie. www.GTFCh.org.

  22. Skopp G, v. Meyer, L. Empfehlungen der Gesellschaft für Toxikologische und Forensische Chemie (GTFCh) zur Asservierung von Obduktionsmaterial für forensisch-toxikologische Untersuchungen. Toxichem + Krimtech 2004;71:101–7.

  23. AWMF Leitlinien-Register Nr. 054/001, Entwicklungsstufe 3 (2007). Leitlinien der Deutschen Gesellschaft für Rechtsmedizin: Die rechtsmedizinische Leichenöffnung. www.awmf.org.

  24. McGrath KK, Jenkins AJ. Detection of drugs of forensic importance in postmortem bone. Am J Forensic Med Pathol. 2009;30:40–4.

    Article  PubMed  Google Scholar 

  25. Baker JE, Jenkins AJ. Screening for cocaine metabolite fails to detect an intoxication. Am J Forensic Med Pathol. 2008;29:141–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Skopp.

Appendices

CME questionnaire

figure afigure a

CME questionnaire answers

  1. 1.

    cyanosis

  2. 2.

    development of tolerance

  3. 3.

    several processes such as a non-uniform distribution of the drug within the body, a release from its binding sites and/or passive diffusion

  4. 4.

    methanol

  5. 5.

    Eschweiler-Clarke

  6. 6.

    Garlic-like—arsenic compounds

  7. 7.

    Extraction of specimens for toxicological analysis

  8. 8.

    Hair sample—acute overdose

  9. 9.

    should be performed on skin and subcutaneous fat if solvent abuse or an anaesthetic death is suspected

  10. 10.

    the date of receipt for the postmortem examination of the corpse

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skopp, G. Postmortem toxicology. Forensic Sci Med Pathol 6, 314–325 (2010). https://doi.org/10.1007/s12024-010-9150-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-010-9150-4

Keywords

Navigation