Skip to main content
Log in

Development of a multiplex methylation-sensitive restriction enzyme-based SNP typing system for deconvolution of semen-containing mixtures

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The identification of mixed stains has always been a difficult problem in personal identification in the forensic field. In recent years, tissue-specific methylation sites have proven to be very stable biomarkers for distinguishing tissue origin. However, it is still challenging to perform tissue source identification and individual identification simultaneously. In this study, we developed a method that uses tissue-specific methylation markers combined with single-nucleotide polymorphism (SNP) markers to detect semen from mixed biofluids and to identify individuals simultaneously. Semen-specific CpG markers were chosen from the literature and further validated utilizing methylation-sensitive restriction endonuclease (MSRE) combined with PCR technology. The neighboring SNP markers were searched in the flanking sequence of the target CpG within 400 bp, and SNP typing was then carried out through a single-base extension reaction followed by capillary electrophoresis. Eventually, a method of MSRE combined with SNaPshot that could detect 12 compound CpG-SNP markers was developed. Using this system, 10 ng of total DNA and DNA mixture with semen content up to 25% could be typed successfully. Moreover, the cumulative discrimination power of the system in the northern Chinese Han population is 0.9998. This study provides a valuable strategy for forensic practice to perform tissue origin and individual identification from mixed stains simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary materials.

Code availability

Not applicable.

References

  1. Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints.’ Nature 318(6046):577–579. https://doi.org/10.1038/318577a0

  2. Li CX, Han JP, Ren WY, Ji AQ, Xu XL, Hu L (2011) DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR. PLoS ONE 6(8):e22316. https://doi.org/10.1371/journal.pone.0022316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Naue J, Hoefsloot HCJ, Kloosterman AD, Verschure PJ (2018) Forensic DNA methylation profiling from minimal traces: how low can we go? Forensic SciInt Genet 33:17–23. https://doi.org/10.1016/j.fsigen.2017.11.004

    Article  CAS  Google Scholar 

  4. Kayser M (2017) Forensic use of Y-chromosome DNA: a general overview. Hum Genet 136(5):621–635. https://doi.org/10.1007/s00439-017-1776-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castella V, Gervaix J, Hall D (2013) DIP-STR: highly sensitive markers for the analysis of unbalanced genomic mixtures. Hum Mutat 34(4):644–654. https://doi.org/10.1002/humu.22280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Li W, Wang J, Chen D, Liu Z, Shi J, Cheng F, Li Z, Ren J, Zhang G, Yun K (2019) A new set of DIP-SNP markers for detection of unbalanced and degraded DNA mixtures. Electrophoresis 40(14):1795–1804. https://doi.org/10.1002/elps.201900017

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Hao T, Cheng X, Wang J, Li W, Liu Z, Shi J, Li Z, Ren J, Yun K, Zhang G (2020) DIP-microhaplotypes: new markers for detection of unbalanced DNA mixtures. Int J Legal Med. https://doi.org/10.1007/s00414-020-02288-y

    Article  PubMed  Google Scholar 

  8. Kelly H, Bright JA, Buckleton JS, Curran JM (2014) A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci Justice 54(1):66–70. https://doi.org/10.1016/j.scijus.2013.07.003

    Article  PubMed  Google Scholar 

  9. Schaukowitch K, Kim TK (2014) Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 264:25–38. https://doi.org/10.1016/j.neuroscience.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  10. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, Koltšina M, Nilsson TK, Vilo J, Salumets A, Tõnisson N (2014) DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15(4):r54. https://doi.org/10.1186/gb-2014-15-4-r54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silva D, Antunes J, Balamurugan K, Duncan G, Alho CS, McCord B (2016) Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples. Forensic SciInt Genet 23:55–63. https://doi.org/10.1016/j.fsigen.2016.01.017

    Article  CAS  Google Scholar 

  12. Holtkötter H, Beyer V, Schwender K, Glaub A, Johann KS, Schürenkamp M, Sibbing U, Banken S, Wiegand P, Pfeiffer H, Dennany L, Vennemann M, Vennemann M (2017) Independent validation of body fluid-specific CpG markers and construction of a robust multiplex assay. Forensic SciInt Genet 29:261–268. https://doi.org/10.1016/j.fsigen.2017.05.002

    Article  CAS  Google Scholar 

  13. Lin YC, Tsai LC, Lee JC, Liu KL, Tzen JT, Linacre A, Hsieh HM (2016) Novel identification of biofluids using a multiplex methylation-specific PCR combined with single-base extension system. Forensic Sci Med Pathol 12(2):128–138. https://doi.org/10.1007/s12024-016-9763-3

    Article  CAS  PubMed  Google Scholar 

  14. Forat S, Huettel B, Reinhardt R, Fimmers R, Haidl G, Denschlag D, Olek K (2016) Methylation markers for the identification of body fluids and tissues from forensic trace evidence. PLoS ONE 11(2):e0147973. https://doi.org/10.1371/journal.pone.0147973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zuo T, Tycko B, Liu TM, Lin JJ, Huang TH (2009) Methods in DNA methylation profiling. Epigenomics 1(2):331–345. https://doi.org/10.2217/epi.09.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Melnikov AA, Gartenhaus RB, Levenson AS, Motchoulskaia NA, LevensonChernokhvostov VV (2005) MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Res 33(10):e93. https://doi.org/10.1093/nar/gni092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheow LF, Quake SR, Burkholder WF, Messerschmidt DM (2015) Multiplexed locus-specific analysis of DNA methylation in single cells. Nat Protoc 10(4):619–631. https://doi.org/10.1038/nprot.2015.041

    Article  CAS  PubMed  Google Scholar 

  18. Lin YC, Tsai LC, Lee JC, Su CW, Tzen JT, Linacre A, Hsieh HM (2016) Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system. Forensic SciInt Genet 25:157–165. https://doi.org/10.1016/j.fsigen.2016.08.011

    Article  CAS  Google Scholar 

  19. Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic SciInt Genet 5(5):517–524. https://doi.org/10.1016/j.fsigen.2010.12.001

    Article  CAS  Google Scholar 

  20. Wasserstrom A, Frumkin D, Davidson A, Shpitzen M, Herman Y, Gafny R (2013) Demonstration of DSI-semen–A novel DNA methylation-based forensic semen identification assay. Forensic SciInt Genet 7(1):136–142. https://doi.org/10.1016/j.fsigen.2012.08.009

    Article  CAS  Google Scholar 

  21. Park J-L, Kwon O-H, Kim JH, Yoo H-S, Lee H-C, Woo K-M, Kim S-Y, Lee S-H, Kim YS (2014) Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic SciInt Genet 13:147–153. https://doi.org/10.1016/j.fsigen.2014.07.011

    Article  CAS  Google Scholar 

  22. Lewontin RC (1988) On measures of gametic disequilibrium. Genetics 120(3):849–852

    Article  CAS  Google Scholar 

  23. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15(2):97–98. https://doi.org/10.1038/sj.cr.7290272

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Gao Z, Wang J, Shi J, Liu J, Chen D, Li W, Guo J, Cheng X, Hao T, Li Z, Li Y, Yan J, Zhang G (2020) A method of identifying the blood contributor in mixture stains through detecting blood-specific mRNA polymorphism. Electrophoresis 41(15):1364–1373. https://doi.org/10.1002/elps.202000053

    Article  CAS  PubMed  Google Scholar 

  25. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481. https://doi.org/10.1038/nature12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watanabe K, Akutsu T, Takamura A, Sakurada K (2016) Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA. Legal Med (Tokyo, Japan) 22:49–53. https://doi.org/10.1016/j.legalmed.2016.08.004

    Article  CAS  Google Scholar 

  27. Watanabe K, Taniguchi K, Akutsu T (2018) Development of a DNA methylation-based semen-specific SNP typing method: a new approach for genotyping from a mixture of body fluids. Forensic SciInt Genet 37:227–234. https://doi.org/10.1016/j.fsigen.2018.09.004

    Article  CAS  Google Scholar 

  28. Xie B, Song F, Wang S, Zhang K, Li Y, Luo H (2020) Exploring a multiplex DNA methylation-based SNP typing method for body fluids identification: as a preliminary report. Forensic SciInt 313:110329. https://doi.org/10.1016/j.forsciint.2020.110329

    Article  CAS  Google Scholar 

  29. Vidaki A, Daniel B, Court DS (2013) Forensic DNA methylation profiling–potential opportunities and challenges. Forensic SciInt Genet 7(5):499–507. https://doi.org/10.1016/j.fsigen.2013.05.004

    Article  CAS  Google Scholar 

  30. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PK, Sullivan PF, Van Den Oord EJ (2014) A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 23(5):1175–1185. https://doi.org/10.1093/hmg/ddt511

    Article  CAS  PubMed  Google Scholar 

  31. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23(5):1186–1201. https://doi.org/10.1093/hmg/ddt531

    Article  CAS  PubMed  Google Scholar 

  32. Lee JW, Choung CM, Jung JY, Lee HY, Lim SK (2018) A validation study of DNA methylation-based age prediction using semen in forensic casework samples. Legal Med (Tokyo, Japan) 31:74–77. https://doi.org/10.1016/j.legalmed.2018.01.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [No.81701868 and No.82030058], the Startup Foundation for Doctors of Shanxi Medical University [BS03201621], and the Key Research and Development (R&D) Projects of Shanxi Province [No.201803D31069].

Author information

Authors and Affiliations

Authors

Contributions

The authors Gengqian Zhang and Zeqin Li contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zeqin Li, Jintao Li, Yidan Li, Na Liu, Feng Liu, and Jianbo Ren. The first draft of the manuscript was written by Zeqin Li and Jintao Li, and all authors commented on previous versions of the manuscript. The authors Jiangwei Yan, Gengqian Zhang, and Keming Yun revised it critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Keming Yun, Jiangwei Yan or Gengqian Zhang.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of Shanxi Medical University (No. 2019sll014). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The authors affirm that human research participants provided informed consent for publication of the data in Supplementary Table 6.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 430 KB)

Supplementary file2 (PDF 1.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, J., Li, Y. et al. Development of a multiplex methylation-sensitive restriction enzyme-based SNP typing system for deconvolution of semen-containing mixtures. Int J Legal Med 135, 1281–1294 (2021). https://doi.org/10.1007/s00414-021-02552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02552-9

Keywords

Navigation