Skip to main content
Log in

Volatile organic compounds in variably aged carrion impacted by the presence of the primary colonizer, Cochliomyia macellaria (Diptera: Calliphoridae)

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The attraction and colonization of vertebrate remains by carrion-associated arthropods are processes largely governed by olfaction. As remains decompose, they emit a bouquet of volatile organic compounds (VOCs), which in part originate from endogenous and exogenous microbes surrounding the carcass or from the carcass itself. The composition and concentration of VOCs are influenced by the presence and abundance of microbial species and arthropods. Blowfly species, such as Cochliomyia macellaria, play a critical role in nutrient recycling and the decomposition process of carrion. Gas chromatography-mass spectroscopy analysis was used to identify and classify volatile emissions from insect-colonized (with C. macellaria) and uncolonized rat carcasses, as well as a standard Gainesville diet, over a 10-day period. There were significant differences in composition and abundance of compounds present in each treatment, with significant effects of time, and different compound composition between treatments. Notable indicator compounds included, but were not limited to, indole, dimethyl disulfide, and dimethyl trisulfide. A high compound richness, and a low compound diversity, was detected over the 10-day period. The indicator compounds detected across all treatments were found to be of microbial origin, highlighting the importance of microbes in decomposition processes and arthropod attraction to carrion. This study also discusses the significant impact of necrophagous arthropods to the VOC profile of carrion. The results of this study provide insight into the changes in decomposition VOCs over time, with an explanation of compounds in high concentration known to be attractive to carrion-colonizing arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2013) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171:761–772

    Article  PubMed  Google Scholar 

  2. Benbow ME, Tomberlin JK, Tarone AM (2016) Carrion ecology, evolution, and their applications. CRC press, Boca Raton

    Google Scholar 

  3. Horenstein MB, Linhares AX, De Ferradas BR, García DD (2010) Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science. Med Vet Entomol 24:16–25

    Article  PubMed  Google Scholar 

  4. Archer MS (2004) Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice 44:35–41

    Article  CAS  PubMed  Google Scholar 

  5. Forbes SL, Carter DO (2016) Processes and mechanisms of death and decomposition of vertebrate carrion. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton

    Google Scholar 

  6. Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  7. Pechal JL, Benbow ME, Crippen TL, Tarone AM, Tomberlin JK (2014) Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5:1–21

    Article  Google Scholar 

  8. Carter DO, Metcalf JL, Bibat A, Knight R (2015) Seasonal variation of postmortem microbial communities. Forensic Sci Med Path 11:202–207

    Article  Google Scholar 

  9. Forbes SL, Perrault KA (2014) Decomposition odour profiling in the air and soil surrounding vertebrate carrion. PLoS One 9:e95107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paczkowski S, Schütz S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91:917–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pechal JL, Crippen TL, Tarone AM, Lewis AJ, Tomberlin JK, Benbow ME (2013) Microbial community functional change during vertebrate carrion decomposition. PLoS One 8:e79035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carvalho L, Thyssen P, Linhares A, Palhares F (2000) A checklist of arthropods associated with pig carrion and human corpses in Southeastern Brazil. Mem I Oswaldo Cruz 95:135–138

    Article  CAS  Google Scholar 

  13. Anderson G, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41:617–625

    Article  Google Scholar 

  14. LeBlanc HN, Logan JG (2010) Exploiting insect olfaction in forensic entomology. In: Amendt J, Goff ML, Campobasso CP, Grassberger M (eds) Current concepts in forensic entomology. Springer Netherlands, Dordrecht

    Google Scholar 

  15. Cammack JA, Pimsler ML, Crippen TL, Tomberlin JK (2016) Chemical ecology of vertebrate carrion. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton

    Google Scholar 

  16. Statheropoulos M, Spiliopoulou C, Agapiou A (2015) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153:147–155

    Article  Google Scholar 

  17. Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA (2008) Odor analysis of decomposing buried human remains. J Forensic Sci 53:384–391

    Article  CAS  PubMed  Google Scholar 

  18. Dekeirsschieter J, Verheggen FJ, Gohy M, Hubrecht F, Bourguignon L, Lognay G et al (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189:46–53

    Article  CAS  PubMed  Google Scholar 

  19. Perrault KA, Rai T, Stuart BH, Forbes SL (2015) Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. Anal Methods 7:690–698

    Article  Google Scholar 

  20. Dubie TR, Talley JL, Payne JB, Wayadande AW, Dillwith J, Richards C (2017) Filth fly activity associated with composted and non-composted beef cadavers and laboratory studies on volatile organic compounds. J Med Entomol 54:1299–1304

    Article  CAS  PubMed  Google Scholar 

  21. Paczkowski S, Maibaum F, Paczkowska M, Schütz S (2012) Decaying mouse volatiles perceived by Calliphora vicina Rob.-Desv. J Forensic Sci 57:1497–1506

    Article  PubMed  Google Scholar 

  22. Rosier E, Loix S, Develter W, Van de Voorde W, Cuypers E, Tytgat J (2017) Differentiation between decomposed remains of human origin and bigger mammals. J Forensic Legal Med 50:28–35

    Article  CAS  Google Scholar 

  23. Metcalf JL, Parfrey LW, Gonzalez A, Lauber CL, Knights D, Ackermann G et al (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2:e01104

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rust L, Nizio KD, Forbes SL (2016) The influence of ageing and surface type on the odour profile of blood-detection dog training aids. Anal Bioanal Chem 408:6349–6360

    Article  CAS  PubMed  Google Scholar 

  25. Weatherbee CR, Pechal JL, Benbow ME (2017) The dynamic maggot mass microbiome. Ann Entomol Soc Am 110:45–53

    Article  Google Scholar 

  26. Brundage AL, Crippen TL, Singh B, Benbow ME, Liu W, Tarone AM, Wood TK, Tomberlin JK (2017) Interkingdom cues by bacteria associated with conspecific and heterospecific eggs of Cochliomyia macellaria and Chrysomya rufifacies (Diptera: Calliphoridae) potentially govern succession on carrion. Ann Entomol Soc Am 110:73–82

    Article  CAS  Google Scholar 

  27. Liu W, Longnecker M, Tarone AM, Tomberlin JK (2016) Responses of Lucilia sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim Behav 115:217–225

    Article  Google Scholar 

  28. Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  29. Brundage AL, Benbow ME, Tomberlin JK (2014) Priority effects on the life-history traits of two carrion blow fly (Diptera, Calliphoridae) species. Ecol Entomol 39:539–547

    Article  Google Scholar 

  30. Stadler S, Desaulniers J-P, Forbes SL (2015) Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues. Int J Legal Med 129:641–650

    Article  PubMed  Google Scholar 

  31. Hogsette JA (1992) New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory. J Econ Entomol 85:2291–2294

    Article  CAS  PubMed  Google Scholar 

  32. Sheppard DC, Tomberlin JK, Joyce JA, Kiser BC, Sumner SM (2002) Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J Med Entomol 39:695–698

    Article  PubMed  Google Scholar 

  33. Dunn LH (1916) Hermetia illucens breeding in a human cadaver (Dipt.). Entomol News 17:59–61

    Google Scholar 

  34. Lord WD, Goff ML, Adkins TR, Haskell NH (1994) The black soldier fly Hermetia illucens (Diptera: Stratiomyidae) as a potential measure of human post-mortem interval: observations and case histories. J Forensic Sci 39:215–222

    Article  CAS  PubMed  Google Scholar 

  35. Martínez-Sánchez A, Magaña C, Saloña M, Rojo S (2011) First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Sci Int 206:e76–e78

    Article  PubMed  Google Scholar 

  36. Tomberlin JK, Sheppard DC, Joyce JA (2005) Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in South Georgia. J Forensic Sci 50:152–153

    Article  PubMed  Google Scholar 

  37. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al (2019) vegan: community ecology package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan

  38. Venables WN, Ripley BD (2002) Modern Applied Statistics with S. (2002) Fourth edition. Springer, New York ISBN 0-387-95457-0

    Book  Google Scholar 

  39. Arbizu PM (2017) pairwiseAdonis: pairwise multilevel comparison using Adonis. R package version 0.0.1

  40. De Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology. URL http://sites.google.com/site/miqueldecaceres/

  41. Dugard P, Todman J, Staines H (2010) Approaching multivariate analysis. A practical introduction, 2nd edn. Routledge, New York

    Google Scholar 

  42. Cablk ME, Szelagowski EE, Sagebiel JC (2012) Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int 220:118–125

    Article  CAS  PubMed  Google Scholar 

  43. Irish L, Rennie SR, Parkes GMB, Williams A (2019) Identification of decomposition volatile organic compounds from surface-deposited and submerged porcine remains. Sci Justice 59:503–515

    Article  CAS  PubMed  Google Scholar 

  44. Frederickx C, Dekeirsschieter J, Verheggen FJ, Haubruge E (2012) Responses of Lucilia sericata Meigen (Diptera: Calliphoridae) to cadaveric volatile organic compounds. J Forensic Sci 57:386–390

    Article  PubMed  Google Scholar 

  45. Arnaldos MI, Romera E, Presa JJ, Luna A, García MD (2004) Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula. Int J Legal Med 118:197–205

    Article  CAS  PubMed  Google Scholar 

  46. Hall RD, Doisy KE (1993) Length of time after death: effect on attraction and oviposition or larviposition of midsummer blow flies (Diptera: Calliphoridae) and flesh flies (Diptera: Sarcophagidae) of medicolegal importance in Missouri. Ann Entomol Soc Am 86:589–593

    Article  Google Scholar 

  47. Ma Q, Fonseca A, Liu W, Fields AT, Pimsler ML, Spindola AF, Tarone AM, Crippen TL, Tomberlin JK, Wood TK (2012) Proteus mirabilis interkingdom swarming signals attract blow flies. ISME J 6:1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kerridge A, Lappin-Scott H, Stevens JR (2005) Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 19:333–337

    Article  CAS  PubMed  Google Scholar 

  49. Crippen TL, Benbow ME, Pechal JL (2016) Microbial interactions during carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton

    Google Scholar 

  50. Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    Article  CAS  Google Scholar 

  51. Mądra A, Frątczak K, Grzywacz A, Matuszewski S (2015) Long-term study of pig carrion entomofauna. Forensic Sci Int 252:1–10

    Article  PubMed  Google Scholar 

  52. Warren JA, Anderson GS (2009) A comparison of development times for Protophormia terraenovae (R-D) reared on different food substrates. Can Soc Forensic Sci J 42:161–171

    Article  Google Scholar 

  53. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH et al (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  54. Martinson HM, Schneider K, Gilbert J, Hines JE, Hambäck PA, Fagan WF (2008) Detritivory: stoichiometry of a neglected trophic level. Ecol Res 23:87–491

    Article  Google Scholar 

  55. Berner D, Blanckenhorn WU, Körner C (2005) Grasshoppers cope with low host plant quality by compensatory feeding and food selection: N limitation challenged. Oikos 111:525–533

    Article  Google Scholar 

  56. Zehdner CB, Hunter MD (2009) More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecol Entomol 34:535–543

    Article  Google Scholar 

  57. Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091

    Article  CAS  Google Scholar 

  58. Waksman SA (1940) The microbiology of cellulose decomposition and some economic problems involved. Bot Rev 6:637–665

    Article  CAS  Google Scholar 

  59. Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol Mongr 79:637–661

    Article  Google Scholar 

  60. Jordan H, Tomberlin JK (2017) Abiotic and biotic factors regulating inter-kingdom engagement between insects and microbe activity on vertebrate remains. Insects 8:54

    Article  PubMed Central  Google Scholar 

  61. Flores R, Shi J, Yu G, Ma B, Ravel J, Goedert JJ, Sinha R (2015) Collection media and delayed freezing effects on microbial composition of human stool. Microbiome 3:33

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

ZK extends thanks to the members of the F.L.I.E.S Facility for assistance in setup and sampling. The authors thank JE Light, ME Benbow, and AM Tarone for comments on earlier versions of this manuscript. The financial assistance of the National Research Foundation (NRF) is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. Grant UID: 104619.

Funding

This study was supported by National Research Foundation South Africa (Grant ID: 104619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zanthé Kotzé.

Ethics declarations

N/A

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

N/A

Informed consent

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

PERMANOVA results testing differences in volatile composition across ten days, using three types of decomposing matter: uncolonized rat carcasses, rat carcasses colonized with Cochliomyia macellaria larvae, and a standard Gainesville diet. A Bonferonni correction was applied to results. Significant differences are indicated by an asterisk. (PDF 61 kb)

Supplementary Table 2

Biological origin and function of indicator compounds detected from analysis of decomposing uncolonized rat carcasses, rat carcasses colonized with C. macellaria larvae, and Gainesville diet. (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotzé, Z., Delclos, P.J., Knap, A.H. et al. Volatile organic compounds in variably aged carrion impacted by the presence of the primary colonizer, Cochliomyia macellaria (Diptera: Calliphoridae). Int J Legal Med 135, 1005–1014 (2021). https://doi.org/10.1007/s00414-020-02478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02478-8

Keywords

Navigation