Skip to main content

Advertisement

Log in

Detection of vaginal fluid stains on common substrates via ATR FT-IR spectroscopy

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The analysis of body fluids is of utmost importance in forensic casework since many biological fluids contain DNA. The ATR FT-IR spectroscopy is an emerging approach for the confirmatory, rapid, facile, non-destructive, and on-site identification and differentiation of body fluid stains. Notwithstanding the ATR FT-IR spectroscopy is showing a colossal promise towards the identification of body fluids, and further forensic enquiry related to substrate’s interference is still in its infancy stage. Therefore, in the present proof-of-concept study, the ATR FT-IR spectroscopy has been utilized for the detection of vaginal fluid stains and to investigate the effect of different substrates on sample analysis. Simulated vaginal fluid samples were prepared on some selected substrates such as glass, plastic, floor tiles, polished wood, paper, and on various cloth substrates and analyzed without any prior sample preparation. Results suggested that vaginal fluid can be successfully detected on non-porous substrates, but it turned out to be a challenging task on porous substrates. However, on the basis of certain peaks, successful identification of vaginal fluid can be done directly on various case-related substrates. The best approach for the detection of vaginal fluid depends upon the nature of substrates and type of interference encountered. In addition, 10 non-vaginal fluid substances which look similar to vaginal fluid and which may lead to misclassification of vaginal fluid or can deliver false-positive results were also analyzed. The spectra of look-alike substances were classified using the chemometric tools such as PCA and PCA-LDA. The developed PCA model successfully classified all vaginal fluid samples from non-vaginal fluid substances with 100% accuracy, specificity, and sensitivity rate. In addition, the effects of other factors such as aging and mixing with other body fluids have also been studied and the results have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. https://doi.org/10.1016/j.forsciint.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Zapata F, Fernández de la Ossa MÁ, García-Ruiz C (2015) Emerging spectrometric techniques for the forensic analysis of body fluids. TrAC - Trends Anal Chem 64:53–63. https://doi.org/10.1016/j.trac.2014.08.011

    Article  CAS  Google Scholar 

  3. Zapata F, Silva Gregório Martins M (2016) Body fluids and spectroscopic techniques in forensics: a perfect match? J Forensic Med 1:1000101. https://doi.org/10.4172/jfm.1000101

    Article  Google Scholar 

  4. Sikirzhytskaya A, Sikirzhytski V, Lednev IK (2012) Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification. Forensic Sci Int 216:44–48. https://doi.org/10.1016/j.forsciint.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  5. Fleming RI, Harbison S (2010) The use of bacteria for the identification of vaginal secretions. Forensic Sci Int Genet 4:311–315. https://doi.org/10.1016/j.fsigen.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  6. Hanson EK, Ballantyne J (2013) Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Sci Justice 53:14–22. https://doi.org/10.1016/j.scijus.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  7. Raffi RO, Moghissi KS, Sacco AG (1977) Proteins of human vaginal fluid. Fertil Steril 28:1345–1348. https://doi.org/10.1016/S0015-0282(16)42982-1

    Article  CAS  PubMed  Google Scholar 

  8. Vásquez A, Jakobsson T, Ahrné S et al (2002) Vaginal Lactobacillus Flora of healthy Swedish women. J Clin Microbiol 40:2746–2749. https://doi.org/10.1128/JCM.40.8.2746-2749.2002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Witkin SS, Linhares IM, Giraldo P (2007) Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol 21:347–354. https://doi.org/10.1016/j.bpobgyn.2006.12.004

    Article  PubMed  Google Scholar 

  10. Nam H, Whang K, Lee Y (2007) Analysis of vaginal lactic acid producing bacteria in healthy women. J Microbiol 45:515–520

    CAS  PubMed  Google Scholar 

  11. Anderson DJ, Politch JA, Pudney J, Marquez CI, Snead MC, Mauck C (2012) A quantitative glycogen assay to verify use of self-administered vaginal swabs. Sex Transm Dis 39:949–953. https://doi.org/10.1097/OLQ.0b013e31826e880e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas F, Van Hecke W (1963) The demonstration of recent sexual intercourse in the male by the Lugol method. Med Sci Law 3:169–171

    CAS  PubMed  Google Scholar 

  13. Jones EL Jr, Leon JA (2004) Lugol’s test reexamined again: buccal cells. J Forensic Sci 49:64–67. https://doi.org/10.1520/JFS2003129

    Article  PubMed  Google Scholar 

  14. Hausmann R, Baltzer M, Schellmann B (1996) The forensic value of the immunohistochemical detection of oestrogen receptors in vaginal epithelium. Int J Legal Med 109:10–13. https://doi.org/10.1007/BF01369595

    Article  CAS  PubMed  Google Scholar 

  15. Sakurada K, Motani H, Akutsu T, Ikegaya H, Iwase H (2008) Identification of vaginal stains by detection of 17 β-estradiol. Can Soc Forensic Sci J 41:13–19. https://doi.org/10.1080/00085030.2008.10757161

    Article  CAS  Google Scholar 

  16. Juusola J, Ballantyne J (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 152:1–12. https://doi.org/10.1016/j.forsciint.2005.02.020

    Article  CAS  PubMed  Google Scholar 

  17. Haas C, Klesser B, Kratzer A, Bär W (2008) mRNA profiling for body fluid identification. Forensic Sci Int Genet Suppl Ser 1:37–38. https://doi.org/10.1016/j.fsigss.2007.10.064

    Article  Google Scholar 

  18. Setzer M, Juusola J, Ballantyne J (2008) Recovery and stability of RNA in vaginal swabs and blood, Semen, and Saliva Stains. 53:296–305. https://doi.org/10.1111/j.1556-4029.2007.00652.x

  19. Liu B, Lague JR, Nunes DP, Toselli P, Oppenheim FG, Soares RV, Troxler RF, Offner GD (2002) Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands. J Histochem Cytochem 50:811–820. https://doi.org/10.1177/002215540205000607

    Article  CAS  PubMed  Google Scholar 

  20. Abiko Y, Nishimura M, Kaku T (2003) Defensins in saliva and the salivary glands. Med Electron Microsc 36:247–252. https://doi.org/10.1007/s00795-003-0225-0

    Article  CAS  PubMed  Google Scholar 

  21. Giampaoli S, Berti A, Valeriani F, Gianfranceschi G, Piccolella A, Buggiotti L, Rapone C, Valentini A, Ripani L, Romano Spica V (2012) Molecular identification of vaginal fluid by microbial signature. Forensic Sci Int Genet 6:559–564. https://doi.org/10.1016/j.fsigen.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  22. Manheim J, Doty KC, McLaughlin G, Lednev IK (2016) Forensic hair differentiation using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Appl Spectrosc 70:1109–1117. https://doi.org/10.1177/0003702816652321

    Article  CAS  PubMed  Google Scholar 

  23. Boll MS, Doty KC, Wickenheiser R, Lednev IK (2017) Differentiation of hair using ATR FT-IR spectroscopy: a statistical classification of dyed and non-dyed hairs. Forensic Chem 6:1–9. https://doi.org/10.1016/j.forc.2017.08.001

    Article  CAS  Google Scholar 

  24. Sharma CP, Sharma S, Sharma V, Singh R (2019) Rapid and non-destructive identification of claws using ATR-FTIR spectroscopy–a novel approach in wildlife forensics. Sci Justice 59:622–629. https://doi.org/10.1016/j.scijus.2019.08.002

    Article  PubMed  Google Scholar 

  25. Peets P, Leito I, Pelt J, Vahur S (2017) Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochim Acta Part A Mol Biomol Spectrosc 173:175–181. https://doi.org/10.1016/j.saa.2016.09.007

    Article  CAS  Google Scholar 

  26. Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy I: thread and single fibre analysis by attenuated total reflectance reflectance. Stud Conserv 48:269–275. https://doi.org/10.1179/sic.2003.48.4.269

    Article  CAS  Google Scholar 

  27. Sharma S, Chophi R, Kaur H, Singh R (2019) Differentiation of cosmetic foundation creams using attenuated total reflection Fourier-transform infrared spectroscopy: a rapid and nondestructive approach in trace evidence analysis. J Forensic Sci 65:751–761. https://doi.org/10.1111/1556-4029.14257

    Article  PubMed  Google Scholar 

  28. Sharma S, Chophi R, Kumar R, Sharma V, Singh R (2019) Differentiation of locally manufactured Kajal by attenuated total reflectance Fourier transform infrared spectroscopy supported by chemometric analysis. Forensic Sci Int 303:109930. https://doi.org/10.1016/j.forsciint.2019.109930

    Article  CAS  PubMed  Google Scholar 

  29. Sharma V, Bhardwaj S, Kumar R (2019) On the spectroscopic investigation of Kohl stains via ATR-FTIR and multivariate analysis: application in forensic trace evidence. Vib Spect 101:81–91. https://doi.org/10.1016/j.vibspec.2019.02.006

    Article  CAS  Google Scholar 

  30. Chophi R, Sharma S, Singh R (2019) Forensic analysis of red lipsticks using ATR-FTIR spectroscopy and chemometrics. Forensic Chem 17:100209. https://doi.org/10.1016/j.forc.2019.100209

    Article  CAS  Google Scholar 

  31. Bueno J, Sikirzhytski V, Lednev IK (2013) ATR-FTIR spectroscopy for gunshot residue analysis: potential for ammunition determination. Anal Chem 85:7287–7294. https://doi.org/10.1021/ac4011843

    Article  CAS  PubMed  Google Scholar 

  32. Causin V, Casamassima R, Marega C et al (2008) The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography, and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks. J Forensic Sci 53:1468–1473. https://doi.org/10.1111/j.1556-4029.2008.00867.x

    Article  CAS  PubMed  Google Scholar 

  33. Asri MNM, Nur Syuhaila Mat Desa W, Ismail D (2015) Fourier transform infrared (FTIR) spectroscopy with chemometric techniques for the classification of ballpoint pen inks. AJFSFM 1:194–200. https://doi.org/10.12816/0017699

    Article  Google Scholar 

  34. Williamson R, Raeva A, Almirall JR (2016) Characterization of printing inks using DART-Q-TOF-MS and attenuated total reflectance (ATR) FTIR. J Forensic Sci 61:706–714. https://doi.org/10.1111/1556-4029.13107

    Article  PubMed  Google Scholar 

  35. Brittain HG (2016) Attenuated Total reflection Fourier transform infrared (ATR FT-IR) spectroscopy as a forensic method to determine the composition of inks used to print the United States one-cent blue Benjamin Franklin postage stamps of the 19th century. Appl Spectrosc 70:128–136

    Article  CAS  Google Scholar 

  36. Mohamad Asri MN, Mat Desa WNS, Ismail D (2018) Source determination of red gel pen inks using Raman spectroscopy and attenuated Total reflectance Fourier transform infrared spectroscopy combined with Pearson’s product moment correlation coefficients and principal component analysis. J Forensic Sci 63:285–291. https://doi.org/10.1111/1556-4029.13522

    Article  PubMed  Google Scholar 

  37. Lee LC, Liong CY, Jemain AA (2018) Effects of data pre-processing methods on classification of ATR-FTIR spectra of pen inks using partial least squares-discriminant analysis (PLS-DA). Chemom Intell Lab Syst 182:90–100. https://doi.org/10.1016/j.chemolab.2018.09.001

    Article  CAS  Google Scholar 

  38. Yadav PK, Sharma RM (2019) Classification of illicit liquors based on their geographic origin using attenuated total reflectance (ATR) – Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Forensic Sci Int 295:e1–e5. https://doi.org/10.1016/j.forsciint.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  39. Elkins KM (2011) Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy*,†. J Forensic Sci 56:1580–1587. https://doi.org/10.1111/j.1556-4029.2011.01870.x

    Article  CAS  PubMed  Google Scholar 

  40. De Wael K, Lepot L, Gason F, Gilbert B (2008) In search of blood—detection of minute particles using spectroscopic methods. Forensic Sci Int 180:37–42. https://doi.org/10.1016/j.forsciint.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  41. Quinn AA, Elkins KM (2017) The differentiation of menstrual from venous blood and other body fluids on various substrates using ATR FT-IR spectroscopy. J Forensic Sci 62:197–204. https://doi.org/10.1111/1556-4029.13250

    Article  CAS  PubMed  Google Scholar 

  42. Orphanou CM (2015) The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 252:e10–e16. https://doi.org/10.1016/j.forsciint.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  43. Gregório I, Zapata F, Torre M, García-Ruiz C (2017) Statistical approach for ATR-FTIR screening of semen in sexual evidence. Talanta 174:853–857. https://doi.org/10.1016/j.talanta.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  44. Gregório I, Zapata F, García-Ruiz C (2017) Analysis of human bodily fluids on superabsorbent pads by ATR-FTIR. Talanta 162:634–640. https://doi.org/10.1016/j.talanta.2016.10.061

    Article  CAS  PubMed  Google Scholar 

  45. Sharma S, Chophi R, Singh R (2019) Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Int J Legal Med 134:63–77. https://doi.org/10.1007/s00414-019-02134-w

    Article  PubMed  Google Scholar 

  46. Lin H, Zhang Y, Wang Q, Li B, Huang P, Wang Z (2017) Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy. Sci Rep 7:13254. https://doi.org/10.1038/s41598-017-13725-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin H, Zhang Y, Wang Q, Li B, Fan S, Wang Z (2018) Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment. Int J Legal Med 132:667–674. https://doi.org/10.1007/s00414-017-1634-2

    Article  PubMed  Google Scholar 

  48. Zhang Y, Wang Q, Li B, Wang Z, Li C, Yao Y, Huang P, Wang Z (2017) Changes in attenuated total reflection Fourier transform infrared spectra as blood dries out. J Forensic Sci 62:761–767. https://doi.org/10.1111/1556-4029.13324

    Article  PubMed  Google Scholar 

  49. Takamura A, Watanabe K, Akutsu T, Ozawa T (2018) Soft and robust identification of body fluid using Fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci Rep 8:8459. https://doi.org/10.1038/s41598-018-26873-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takamura A, Watanabe K, Akutsu T, Ikegaya H, Ozawa T (2017) Spectral mining for discriminating blood origins in the presence of substrate interference via attenuated total reflection Fourier transform infrared spectroscopy: postmortem or antemortem blood? Anal Chem 89:9797–9804. https://doi.org/10.1021/acs.analchem.7b01756

    Article  CAS  PubMed  Google Scholar 

  51. Takamura A, Halamkova L, Ozawa T, Lednev IK (2019) Phenotype profiling for forensic purposes: determining donor sex based on Fourier transform infrared spectroscopy of urine traces. Anal Chem 91:6288–6295. https://doi.org/10.1021/acs.analchem.9b01058

    Article  CAS  PubMed  Google Scholar 

  52. Mistek E, Halámková L, Lednev IK (2019) Phenotype profiling for forensic purposes: Nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains. Forensic Chem 16:100176. https://doi.org/10.1016/j.forc.2019.100176

    Article  CAS  Google Scholar 

  53. Zhang K, Wang Q, Liu R, Wei X, Li Z, Fan S, Wang Z (2019) Evaluating the effects of causes of death on postmortem interval estimation by ATR-FTIR spectroscopy. Int J Legal Med 134:565–574. https://doi.org/10.1007/s00414-019-02042-z

    Article  PubMed  Google Scholar 

  54. Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK (2015) Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem 87:306–327. https://doi.org/10.1021/ac504068a

    Article  CAS  PubMed  Google Scholar 

  55. Doty KC, Lednev IK (2018) Raman spectroscopy for forensic purposes: recent applications for serology and gunshot residue analysis. TrAC Trends Anal Chem 103:215–222. https://doi.org/10.1016/j.trac.2017.12.003

    Article  CAS  Google Scholar 

  56. Zapata F, de la Ossa MÁF, García-Ruiz C (2016) Differentiation of body fluid stains on fabrics using external reflection Fourier transform infrared spectroscopy (FT-IR) and chemometrics. Appl Spectrosc 70:654–665. https://doi.org/10.1177/0003702816631303

    Article  CAS  PubMed  Google Scholar 

  57. Morillas AV, Gooch J, Frascione N (2018) Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta 184:1–6. https://doi.org/10.1016/j.talanta.2018.02.110

    Article  CAS  PubMed  Google Scholar 

  58. Sharma S, Singh R (2019) Detection and discrimination of seminal fluid using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy combined with chemometrics. Int J Legal Med:1–22. https://doi.org/10.1007/s00414-019-02222-x

Download references

Acknowledgments

The authors would sincerely like to thank University Grants Commission (UGC), Ministry of Human Resource Development, and Govt. of India, for financial assistance for providing laboratory facilities in the Department of Forensic Science, Punjabi University Patiala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the Institutional Ethical Committee (IEC), Punjabi university, Patiala-147002 with letter number IEC/03-2017/08. All the participants were informed about the study and their consent was duly recorded.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Singh, R. Detection of vaginal fluid stains on common substrates via ATR FT-IR spectroscopy. Int J Legal Med 134, 1591–1602 (2020). https://doi.org/10.1007/s00414-020-02333-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02333-w

Keywords

Navigation