Skip to main content
Log in

Estimation of the number of contributors to mixed samples of DNA by mitochondrial DNA analyses using massively parallel sequencing

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We evaluated whether the number of contributors to mixed DNA samples can be estimated by analyzing the D-loop of mitochondrial DNA using massively parallel sequencing. The A- (positions 16,209–16,400) and B- (positions 30–284) amplicons in hypervariable regions 1 and 2, respectively, were sequenced using MiSeq with 2 × 251 cycles. Sequence extraction and trimming were performed using CLC Genomics Workbench 11 and the number of observed haplotypes was counted for each amplicon type using Microsoft Excel. The haplotype ratios were calculated by dividing the number of counted reads of the corresponding haplotype by the total number of sequence reads. Haplotypes that were over the threshold (5%) were defined as positive haplotypes. The number of larger positive haplotypes in either of the two amplicon types was defined as the number of contributors. Samples were collected from seven individuals. Seventeen mixed samples were prepared by mixing DNA from two to five contributors at various ratios. The number of contributors was correctly estimated from almost all of the mixed samples containing equal amounts of DNA from two to five people. In mixed samples of two or three people, the minor components were detected down to a ratio of 20:1 or 8:2:1. However, heteroplasmy, base deletions, and sharing of the same haplotypes caused incorrect estimations of the number of contributors. Although this method still has room for improvement, it may be useful for estimating the number of contributors in a mixed sample, as it does not rely on forensic mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleka Ø, Storvik G, Gill P (2016) EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci Int Genet 21:35–44. https://doi.org/10.1016/j.fsigen.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  2. Manabe S, Morimoto C, Hamano Y, Fujimoto S, Tamaki K (2017) Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model. PLoS ONE 12(11):e0188183. https://doi.org/10.1371/journal.pone.0188183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marsden CD, Rudin N, Inman K, Lohmueller KE (2016) An assessment of the information content of likelihood ratios derived from complex mixtures. Forensic Sci Int Genet 22:64–72. https://doi.org/10.1016/j.fsigen.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell AA, Tamariz J, O’Connell K, Ducasse N, Budimlija Z, Prinz M, Caragine T (2012) Validation of a DNA mixture statistics tool incorporating allelic drop-out anddrop-in. Forensic Sci Int Genet 6:749–761. https://doi.org/10.1016/j.fsigen.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  5. Inman K, Rudin N, Cheng K, Robinson C, Kirschner A, Inman-Semerau L, Lohmueller KE (2015) Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinformatics 16:298. https://doi.org/10.1186/s12859-015-0740-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manabe S, Mori Y, Kawai C, Ozeki M, Tamaki K (2013) Mixture interpretation: experimental and simulated reevaluation of qualitative analysis. Legal Med 15:66–71. https://doi.org/10.1016/j.legalmed.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  7. Parson W, Ballard D, Budowle B, Butler JM, Gettings KB, Gill P, Gusmão L, Hares DR, Irwin JA, King JL, Knijff P, Morling N, Prinz M, Schneider PM, Neste CV, Willuweit S, Phillips C (2016) Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Sci. Int. Genet. 22:54–63. https://doi.org/10.1016/j.fsigen.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  8. Warshauer DH, Lin D, Hari K, Jain R, Davis C, LaRue B, King JL, Budowle B (2013) STRait Razor: a length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 7:409–417. https://doi.org/10.1016/j.fsigen.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  9. Jäger AC, Alvarez ML, Davis CP, Guzmán E, Han Y, Way L, Walichiewicz P, Silva D, Pham N, Caves G, Bruand J, Schlesinger F, Pond SJK, Varlaro J, Stephens KM, Holt CL (2017) Developmental validation of the MiSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci Int Genet 28:52–70. https://doi.org/10.1016/j.fsigen.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  10. Guo F, Zhou Y, Song H, Zhao J, Shen H, Zhao B, Liu F, Jiang X (2016) Next generation sequencing of SNPs using the HID-Ion AmpliSeqTM Identity Panel on the Ion Torrent PGMTM platform. Forensic Sci Int Genet 25:73–84. https://doi.org/10.1016/j.fsigen.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  11. Pakstis AJ, Speed WC, Fang R, Hyland FCL, Furtado MR, Kidd JR, Kidd KK (2010) SNPs for a universal individual identification panel. Hum Genet 127:315–324. https://doi.org/10.1007/s00439-009-0771-1

    Article  PubMed  Google Scholar 

  12. Nakanishi H, Pereira V, Børsting C, Yamamoto T, Tvedebrink T, Hara M, Takada A, Saito K, Morling N (2018) Analysis of mainland Japanese and Okinawan Japanese populations using the precision ID Ancestry Panel. Forensic Sci Int Genet 33:106–109. https://doi.org/10.1016/j.fsigen.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  13. Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagacé R, Irwin J (2013) Reprint of: Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7:632–639. https://doi.org/10.1016/j.fsigen.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  14. King JL, LaRue BL, Novroski NM, Stoljarova M, Seo SB, Zeng X, Warshauer DH, Davis CP, Parson W, Sajantila A, Budowle B (2014) High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci Int Genet 12:128–135. https://doi.org/10.1016/j.fsigen.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Davis C, Peters D, Warshauer D, King J, Budowle B (2015) Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing. Legal Med 17:123–127. https://doi.org/10.1016/j.legalmed.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  16. McElhoe JA, Holland MM, Makova KD, Su MS, Paul IM, Baker CH, Faith SA, Young B (2014) Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci Int Genet 13:20–29. https://doi.org/10.1016/j.fsigen.2014.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mikkelsen M, Frank-Hansen R, Hansen AJ, Morling N (2014) Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics. Forensic Sci Int Genet 12:30–37. https://doi.org/10.1016/j.fsigen.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  18. Churchill JD, Stoljarova M, King JL, Budowle B (2018) Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int J Legal Med 132:1263–1272. https://doi.org/10.1007/s00414-018-1799-3

    Article  PubMed  Google Scholar 

  19. Kim H, Erlich HA, Calloway CD (2015) Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat Med J 56:208–217. https://doi.org/10.3325/cmj.2015.56.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peck MA, Sturk-Andreaggi K, Thomas JT, Oliver RS, Barritt-Ross S, Marshall C (2018) Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Forensic Sci Int Genet 34:25–36. https://doi.org/10.1016/j.fsigen.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  21. Peck MA, Brandhagen MD, Marshall C, Diegoli TM, Irwin JA, Sturk-Andreaggi K (2016) Concordance and reproducibility of a next generation mtGenome sequencing method for high-quality samples using the Illumina MiSeq. Forensic Sci Int Genet 24:103–111. https://doi.org/10.1016/j.fsigen.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  22. Holland MM, Wilson LA, Copeland S, Dimick G, Holland CA, Bever R, McElhoe JA (2017) MPS analysis of the mtDNA hypervariable regions on the MiSeq with improved enrichment. Int J Legal Med 131:919–931. https://doi.org/10.1007/s00414-017-1530-9

    Article  PubMed  Google Scholar 

  23. Nakahara H, Sekiguchi K, Imaizumi K, Mizuno N, Kasai K (2008) Heteroplasmies detected in an amplified mitochondrial DNA control region from a small amount of template. J Forensic Sci 53:306–311. https://doi.org/10.1111/j.1556-4029.2007.00655.x

    Article  CAS  PubMed  Google Scholar 

  24. Sekiguchi K, Imaizumi K, Matsuda H, Mizuno N, Yoshida K, Senju H, Sato H, Kasai K (2003) MtDNA sequence analysis using capillary electrophoresis and its application to the analysis of mtDNA in hair. Jpn J Sci Tech Iden 7:123–130. https://doi.org/10.3408/jasti.7.123

    Article  Google Scholar 

  25. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative GenomicsViewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  26. Santos C, Sierra B, Alvarez L, Ramos A, Fernández E, Nogués R, Aluja MP (2008) Frequency and pattern of heteroplasmy in the control region of human mitochondrial DNA. J Mol Evol 67:191–200. https://doi.org/10.1007/s00239-008-9138-9

    Article  CAS  PubMed  Google Scholar 

  27. Wang DY, Chang CW, Lagacé RE, Calandro LM, Hennessy LK (2012) Developmental validation of the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit: an established multiplex assay with improved performance. J Forensic Sci 57:453–465. https://doi.org/10.1111/j.1556-4029.2011.01963.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hajime Miyaguchi (National Research Institute of Police Science) for his help with the MiSeq analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nakanishi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all of the participants.

Ethics approval

This study was approved by the Ethics Committee of Juntendo University School of Medicine (No. 2016134).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 84 kb)

ESM 2

(PPTX 84 kb)

ESM 3

(PPTX 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, H., Fujii, K., Nakahara, H. et al. Estimation of the number of contributors to mixed samples of DNA by mitochondrial DNA analyses using massively parallel sequencing. Int J Legal Med 134, 101–109 (2020). https://doi.org/10.1007/s00414-019-02182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02182-2

Keywords

Navigation