Skip to main content

Advertisement

Log in

Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Body fluid identification in crime scene investigations aids in reconstruction of crime scenes. Several studies have identified and reported differentially methylated sites (DMSs) and regions (DMRs) which differ between forensically relevant tissues (tDMRs) and body fluids. Diverse factors affect methylation patterns such as the environment, diets, lifestyle, disease, ethnicity, genetic variation, amongst others. Thus, it is important to analyse the stability of markers employed for forensic identification. Furthermore, even though epigenetic modifications are described as stable and heritable, epigenetic inheritance of potential markers for body fluid identification needs to be assessed in the long term. Here, we discuss the current status of reported DNA methylation-based markers and their verification studies. Such thorough investigation is crucial to develop a stable panel of DNA methylation-based markers for accurate body fluid identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nustad HE, Almeida M, Canty AJ, LeBlanc M, Page CM, Melton PE (2018) Epigenetics, heritability and longitudinal analysis. BMC Genet 19(Suppl 1):77. https://doi.org/10.1186/s12863-018-0648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lalruatfela B (2013) On DNA methylation: An introductory review. Science Vision 13:1-7. ISSN (online):2229-6026.

  3. Ghosh S, Yates AJ, Frühwald MC, Miecznikowski JC, Plass C, Smiraglia D (2010) Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues. Epigenetics 5(6):527–538. https://doi.org/10.4161/epi.5.6.12228

    Article  CAS  Google Scholar 

  4. Pinney SE (2014) Mammalian Non-CpG Methylation: Stem Cells and Beyond. Biology (Basel) 3(4):739–751. https://doi.org/10.3390/biology3040739

    Article  CAS  Google Scholar 

  5. Yan J, Zierath JR, Barrès R (2011) Evidence for non-CpG methylation in mammals. Exp Cell Res 317(18):2555–2561. https://doi.org/10.1016/j.yexcr.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  6. Kader F, Ghai M (2016) DNA methylation-based variation between human populations. Mol Genet Genomics 292(1):5–35. https://doi.org/10.1007/s00438-016-1264-2

    Article  CAS  PubMed  Google Scholar 

  7. Rienius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D et al (2012) Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One 7(7):e41361. https://doi.org/10.1371/journal.pone.0041361

    Article  CAS  Google Scholar 

  8. Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34(4):753–764. https://doi.org/10.1016/j.mam.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  9. Bestor TH, Edwards JR, Boulard M (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci USA 112(22):6796–6799. https://doi.org/10.1073/pnas.1415301111

    Article  CAS  PubMed  Google Scholar 

  10. Lövkvist C, Dodd IB, Sneppen K, Haerter JO (2016) DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res 44(11):5123–5132. https://doi.org/10.1093/nar/gkw124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mokarram P, Kumar K, Brim H, Naghibalhossaini F, Saberi-Firoozi M, Nouraie M et al (2009) Distinct high-profile methylated genes in colorectal cancer. PLoS One 4:e7012. https://doi.org/10.1371/journal.pone.0007012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiley KL, Treadwell E, Manigaba K, Word B, Lyn-Cook BD (2013) Ethnic differences in DNA methyltransferases expression in patients with systemic lupus erythematosus. J Clin Immunol 33(2):342–348. https://doi.org/10.1007/s10875-012-9803-z

    Article  CAS  PubMed  Google Scholar 

  13. Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, Wahl S, Elliott HR, Rota F, Scott WR, Zhang W, Tan ST, Campanella G, Chadeau-Hyam M, Yengo L, Richmond RC, Adamowicz-Brice M, Afzal U, Bozaoglu K, Mok ZY, Ng HK, Pattou F, Prokisch H, Rozario MA, Tarantini L, Abbott J, Ala-Korpela M, Albetti B, Ammerpohl O, Bertazzi PA, Blancher C, Caiazzo R, Danesh J, Gaunt TR, de Lusignan S, Gieger C, Illig T, Jha S, Jones S, Jowett J, Kangas AJ, Kasturiratne A, Kato N, Kotea N, Kowlessur S, Pitkäniemi J, Punjabi P, Saleheen D, Schafmayer C, Soininen P, Tai ES, Thorand B, Tuomilehto J, Wickremasinghe AR, Kyrtopoulos SA, Aitman TJ, Herder C, Hampe J, Cauchi S, Relton CL, Froguel P, Soong R, Vineis P, Jarvelin MR, Scott J, Grallert H, Bollati V, Elliott P, McCarthy M, Kooner JS (2015) Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 3(7):526–534. https://doi.org/10.1016/S2213-8587(15)00127-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu H, Liu X, Deng Y, Qing H (2013) DNA methylation, a hand behind neurodegenerative diseases. Front. Aging Neurosci 5:85. https://doi.org/10.3389/fnagi.2013.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kader F, Ghai M, Maharaj L (2018) The effects of DNA methylation on human psychology. Behav Brain Res 346:47–65. https://doi.org/10.1016/j.bbr.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  16. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–R58. https://doi.org/10.1093/hmg/ddi114

    Article  CAS  PubMed  Google Scholar 

  17. Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M (2018) DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 174:3–17. https://doi.org/10.1016/j.mad.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  18. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828. https://doi.org/10.1101/gad.234294.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334(6054):369–373. https://doi.org/10.1126/science.1212959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stricker SH, Götz M (2018) DNA-Methylation: Master or Slave of Neural Fate Decisions? Front Neuro 12:5. https://doi.org/10.3389/fnins.2018.00005

    Article  Google Scholar 

  21. van Dongen J, Nivard MG, Willemsen G, Hottenga JJ, Helmer Q, Dolan CV, Ehli EA, Davies GE, van Iterson M, Breeze CE, Beck S, BIOS Consortium, Suchiman HE, Jansen R, van Meurs J, Heijmans BT, Slagboom PE, Boomsma DI (2016) Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat Commun 7:11115. https://doi.org/10.1038/ncomms11115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. King-Batoon A, Leszczynska JM, Klein CB (2008) Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen 49:36–45. https://doi.org/10.1002/em.20363

    Article  CAS  PubMed  Google Scholar 

  23. Perrier F, Viallon V, Ambatipudi S, Ghantous A, Cuenin C, Hernandez-Vargas H, Chajès V, Baglietto L, Matejcic M, Moreno-Macias H, Kühn T, Boeing H, Karakatsani A, Kotanidou A, Trichopoulou A, Sieri S, Panico S, Fasanelli F, Dolle M, Onland-Moret C, Sluijs I, Weiderpass E, Quirós JR, Agudo A, Huerta JM, Ardanaz E, Dorronsoro M, Tong TYN, Tsilidis K, Riboli E, Gunter MJ, Herceg Z, Ferrari P, Romieu I (2019) Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study. Clin Epigenetics 11(1):57. https://doi.org/10.1186/s13148-019-0637-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alegria-Torres TAA, Baccarelli A, Bolati V (2011) Epigenetics and Lifestyle. Epigenomics. 3:267–277. https://doi.org/10.2217/epi.11.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elliott HR, Tillin T, McArdle WL, Ho K, Duggirala A, Frayling TM, Davey Smith G, Hughes AD, Chaturvedi N, Relton CL (2014) Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clin Epigenetics 6(1):4. https://doi.org/10.1186/1868-7083-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsaprouni LG, Yang TP, Bell J, Dick KJ, Kanoni S, Nisbet J, Viñuela A, Grundberg E, Nelson CP, Meduri E, Buil A, Cambien F, Hengstenberg C, Erdmann J, Schunkert H, Goodall AH, Ouwehand WH, Dermitzakis E, Spector TD, Samani NJ, Deloukas P (2014) Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics. 9(10):1382–1396. https://doi.org/10.4161/15592294.2014.969637

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nielsen DA, Yuferov V, Hamon S, Jackson C, Ho A, Ott J, Kreek MJ (2009) Increased OPRM1 DNA methylation in lymphocytes of methadone-maintained former heroin addicts. Neuropsychopharmacology 34(4):867–873. https://doi.org/10.1038/npp.2008.108

    Article  CAS  PubMed  Google Scholar 

  28. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  29. Phipson B, Oshlack A (2014) DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging. Genome Biol 15(9):465. https://doi.org/10.1186/s13059-014-0465-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N (2010) Tissue-specific dysregulation of DNA methylation in aging. Aging Cell 9(4):506–518. https://doi.org/10.1111/j.1474-9726.2010.00577.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23(5):1186–1201. https://doi.org/10.1093/hmg/ddt531

    Article  CAS  PubMed  Google Scholar 

  32. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD et al (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14(9):R102. https://doi.org/10.1038/npp.2008.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL et al (2016) Ageing and environmental exposures alter tissue-specific DNA methylation dependent on CpG island context. PLoS Genet 5(8):e1000602. https://doi.org/10.1371/journal.pgen.1000602

    Article  CAS  Google Scholar 

  34. Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH (2018) Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res 46(14):7022–7039. https://doi.org/10.1093/nar/gky498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kader F, Ghai M (2015) DNA Methylation and Application in Forensic Sciences. Forensic Sci Int 249:245–265. https://doi.org/10.1016/j.forsciint.2015.01.037

    Article  CAS  Google Scholar 

  36. Prokhortchouk E, Defossez PA (2008) The cell biology of DNA methylation in mammals. Biochim Biophys Acta 1783(11):2167–2173. https://doi.org/10.1016/j.bbamcr.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  37. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK (2012) On the presence and role of human gene-body DNA methylation. Oncotarget 3(4):462–474. https://doi.org/10.18632/oncotarget.497

    Article  PubMed  PubMed Central  Google Scholar 

  38. Illingworth RS, Bird AP (2009) CpG islands--'a rough guide'. FEBS Lett 583(11):1713–1720. https://doi.org/10.1016/j.febslet.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  39. Mendizabal I, Yi SV (2016) Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation. Hum Mol Genet 25(1):69–82. https://doi.org/10.1093/hmg/ddv449

    Article  CAS  PubMed  Google Scholar 

  40. Edgar R, Tan PP, Portales-Casamar E, Pavlidis P (2014) Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin 7(1):28. https://doi.org/10.1186/1756-8935-7-28

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sijen T (2014) Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 18:21–32. https://doi.org/10.1016/j.fsigen.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  42. Rechache NS, Wang Y, Stevenson HS, Killian JK, Edelman DC, Merino M et al (2012) DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors. J Clin Endocrinol Metab 97(6):E1004–E1013. https://doi.org/10.1210/jc.2011-3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, Koltšina M, Nilsson TK, Vilo J, Salumets A, Tõnisson N (2014) DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15(4):r54. https://doi.org/10.1186/gb-2014-15-4-r54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet 38:1378–1385. https://doi.org/10.1038/ng1909

    Article  CAS  PubMed  Google Scholar 

  45. Igarashi J, Muroi S, Kawashima H, Wang X, Shinojima Y, Kitamura E, Oinuma T, Nemoto N, Song F, Ghosh S, Held WA, Nagase H (2008) Quantitative analysis of human tissue-specific differences in methylation. Biochemical and Biophysical Research Communications. 376:658–664. https://doi.org/10.1016/j.bbrc.2008.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen NM, Kenigsberg E, Tanay A (2011) Primate CpG Islands are maintained by Heterogeneous Evolutionary Regimes Involving Minimal Selection. Cell. 145:773–786. https://doi.org/10.1016/j.cell.2011.04.024

    Article  CAS  PubMed  Google Scholar 

  47. Ohgane J, Yagi S, Shiota K (2008) Epigenetics: the DNA methylation profile of tissue-dependent and differentially methylated regions in cells. Placenta 29(Suppl A):S29–S35. https://doi.org/10.1016/j.placenta.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  48. Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S et al (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18:1518–1529. https://doi.org/10.1101/gr.077479.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, de Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481. https://doi.org/10.1038/nature12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kayser M, de Knijff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 12(3):179–192. https://doi.org/10.1038/nrg2952

    Article  CAS  PubMed  Google Scholar 

  51. Weyerman C, Ribaux O (2012) Situating forensic traces in time. Sci Justice 52:68–75. https://doi.org/10.1016/j.scijus.2011.09.003

    Article  Google Scholar 

  52. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. https://doi.org/10.1016/j.forsciint.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  53. An JH, Shin KJ, Yang WI, Lee HY (2012) Body fluid identification in forensics. BMB Rep 45:545–553. https://doi.org/10.5483/BMBRep.2012.45.10.206

    Article  CAS  PubMed  Google Scholar 

  54. Quinone I, Daniel B (2012) Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Genet 6(1):26–30. https://doi.org/10.1016/j.fsigen.2011.01.004

    Article  CAS  Google Scholar 

  55. An JH, Choi A, Shin KJ, Yang WI, Lee HY (2013) DNA methylation-specific multiplex assays for body fluid identification. Int J Legal Med 127:35–43. https://doi.org/10.1007/s00414-012-0719-1

    Article  PubMed  Google Scholar 

  56. Choi A, Shin KJ, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128(1):33–41. https://doi.org/10.1007/s00414-013-0918-4

    Article  PubMed  Google Scholar 

  57. Vidaki A, Kayser M (2018) Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 37:180–195. https://doi.org/10.1016/j.fsigen.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  58. Frumkin D, Wasserstrom A, Budowle B, Davidson A (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5:517–524. https://doi.org/10.1016/j.fsigen.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  59. Lee HY, An JH, Jung SE, Oh YN, Lee EY, Choi A, Yang WI, Shin KJ (2015) Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci Int Genet 17:17–24. https://doi.org/10.1016/j.fsigen.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  60. Lee HY, Jung SE, Lee EH, Yang WI, Shin KJ (2016) DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Sci Int Genet 24:75–82. https://doi.org/10.1016/j.fsigen.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  61. Holtkotter H, Beyer V, Schwender K, Glaub A, Johann KS, Schurenkamp M et al (2017) Independent validation of body fluid-specific CpG markers and construction of a robust multiplex assay. Forensic Sci Int Genet 29:261–268. https://doi.org/10.1016/j.fsigen.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  62. Lin YC, Tsai LC, Lee JC, Liu KL, Tzen JT, Linacre A et al (2016) Novel identification of biofluids using a multiplex methylation-specific PCR combined with single-base extension system. Forensic Sci Med Pathol 12(2):128–138. https://doi.org/10.1007/s12024-016-9763-3

    Article  CAS  PubMed  Google Scholar 

  63. Silva DSBS, Antunes J, Balamurugan K, Duncan G, Alho CS, McCord B (2016) Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples. Forensic Sci Int Genet 23:55–63. https://doi.org/10.1016/j.fsigen.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  64. Peat JR, Smallwood SA (2018) Low Input Whole-Genome Bisulfite Sequencing Using a Post-Bisulfite Adapter Tagging Approach. Methods Mol Bio 1708:161–169. https://doi.org/10.1007/978-1-4939-7481-8_9

    Article  CAS  Google Scholar 

  65. Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol. Chapter 7 Unit 7.9.1-17. DOI: https://doi.org/10.1002/0471142727.mb0709s91.

    Article  Google Scholar 

  66. Gomes I, Kohlmeier F, Schneider PM (2011) Genetic markers for body fluid and tissue identification in forensics. Forensic Sci Int Genet Suppl Ser 3:e469–e470. https://doi.org/10.1016/j.fsigss.2011.09.096

    Article  Google Scholar 

  67. Madi T, Balamurugan K, Bombardi R, Duncan G, McCord B (2012) The determination of tissue specific DNA methylation patterns in forensic biofluids using bisulphite modification and pyrosequencing. Electrophoresis 33:1736–1745. https://doi.org/10.1002/elps.201100711

    Article  CAS  PubMed  Google Scholar 

  68. Antunes J, Madi T, Balamurugan K, Bombardi R, Duncan G, McCord B (2013) DNA methylation markers as a powerful technique to discriminate body fluids present in crime scenes. Available at: http://au.promega.com/~/media/files/resources/conference%20proceedings/ishi%2024/oral%20presentations/antunes-manuscript.pdf. [Downloaded 25 May 2014].

  69. Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126:55–62. https://doi.org/10.1007/s00414-011-0569-2

    Article  PubMed  Google Scholar 

  70. Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N et al (2007) Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 89:326–337. https://doi.org/10.1016/j.ygeno.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  71. Illingworth RS, Kerr A, DeSousa D, Jorgensen H, Ellis P, Stalker J et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biology 6:e22. https://doi.org/10.1371/journal.pbio.0060022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Park JL, Kwon OH, Kim JH, Yoo HS, Lee HC, Woo KM, Kim SY, Lee SH, Kim YS (2014) Identification of body fluid specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet 13:147–153. https://doi.org/10.1016/j.fsigen.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  73. Forat S, Huettel B, Reinhardt R, Fimmers R, Haidl G, Denschlag D, Olek K (2016) Methylation markers for the identification of body fluids and Tissues from forensic trace evidence. PLoS One 11(2):e0147973. https://doi.org/10.1371/journal.pone.0147973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fu XD, Wu J, Wang J, Huang Y, Hou YP, Yan J (2015) Identification of body fluid using tissue-specific DNA methylation markers. Forensic Sci Int Genet Suppl Ser 5:e151–e153. https://doi.org/10.1016/j.fsigss.2015.09.061

    Article  Google Scholar 

  75. Watanabe K, Akutsu T, Takamura A, Sakurada K (2016) Evaluation of a blood-specific DNA methylated region and trial for allele-specific blood identification from mixed body fluid DNA. Legal Med (Tokyo, Japan) 22:49–53. https://doi.org/10.1016/j.legalmed.2016.08.004

    Article  CAS  Google Scholar 

  76. Vidaki A, Giangasparo F, Syndercombe Court D (2016) Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing. Electrophoresis 37(21):2767–2779. https://doi.org/10.1002/elps.201600261

    Article  CAS  PubMed  Google Scholar 

  77. Antunes J, Silva DS, Balamurugan K, Duncan G, Alho CS, McCord B (2015) High-resolution melt analysis of DNA to discriminate semen in biological stains. Anal Biochem 494:40–45. https://doi.org/10.1016/j.ab.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  78. Matheson CD, Gurney C, Esau N, Lehto R (2010) Assessing PCR Inhibition from Humic Substances. Open Enzyme Inhib J 3:38–45. https://doi.org/10.2174/1874940201003010038

    Article  CAS  Google Scholar 

  79. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431. https://doi.org/10.1093/bioinformatics/18.11.1427

    Article  CAS  PubMed  Google Scholar 

  80. Chaitanya L, Van Oven M, Weiler N, Harteveld J, Wirken L, Sijen T et al (2014) Developmental validation of mitochondrial DNA genotyping assays for adept matrilineal inference of biogeographic ancestry at a continental level. Forensic Sci Int Genet 11:39–51. https://doi.org/10.1016/j.fsigen.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  81. Antunes J, Silva DS, Balamurugan K, Duncan G, Alho CS, McCord B (2016) Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing. Electrophoresis 37(21):2751–2758. https://doi.org/10.1002/elps.201600037

    Article  CAS  PubMed  Google Scholar 

  82. Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196:1–7. https://doi.org/10.1002/path.1024

    Article  CAS  PubMed  Google Scholar 

  83. Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig DW, Redman M, Gershon ES, Liu C (2010) Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 86(3):411–419. https://doi.org/10.1016/j.ajhg.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann O, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439. https://doi.org/10.1101/gr.103101.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaminsky Z, Petronis A (2009) Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels. Methods Mol Biol 507:241–255. https://doi.org/10.1007/978-1-59745-522-0_18

    Article  CAS  PubMed  Google Scholar 

  86. Subramanian S, Kumar S (2003) Neutral Substitutions Occur at a Faster Rate in Exons than in Noncoding DNA in Primate Genomes. Genome Res 13(5):838–844. DOI: 10.1186/1756-8935-6-26. DOI: https://doi.org/10.1101/gr.1152803.

    Article  CAS  Google Scholar 

  87. Chatterjee S, Pal JK (2009) Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. Biol Cell 101(5):251–262. https://doi.org/10.1042/BC20080104

    Article  CAS  PubMed  Google Scholar 

  88. Reamon-Buettner SM, Cho SH, Borlak J (2007) Mutations in the 3’-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Medical Genetics 8:38. https://doi.org/10.1186/1471-2350-8-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rogozin IB, Pavlov YI (2003) Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 544(1):65–85

    Article  CAS  Google Scholar 

  90. Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: Causes and consequences. Nat Rev Genet 8:619–631. https://doi.org/10.1038/nrg2158

    Article  CAS  PubMed  Google Scholar 

  91. Duret L (2009) Mutation patterns in the human genome: More variable than expected. PLoS Biology 7(2):e1000028. https://doi.org/10.1371/journal.pbio.100002

    Article  PubMed  PubMed Central  Google Scholar 

  92. Arndt PF, Hwa T, Petrov DA (2005) Substantial regional variation in substitution rates in the human genome: Importance of GC content, gene density, and telomere-specific effects. J Mol Evol 60:748–763. https://doi.org/10.1007/s00239-004-0222-5

    Article  CAS  PubMed  Google Scholar 

  93. Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genetics 4(5):e1000071. https://doi.org/10.1371/journal.pgen.1000071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nabel CS, Manning SA, Kohli RM (2012) The Curious Chemical Biology of Cytosine: Deamination, Methylation and Oxidation as Modulators of Genomic Potential. ACS Chem Biol 7(1):20–30. https://doi.org/10.1021/cb2002895

    Article  CAS  PubMed  Google Scholar 

  95. Frederico LA, Kunkel TA, Shaw BR (1993) Cytosine deamination in mismatched base pairs. Biochemistry 32:6523–6530. https://doi.org/10.1021/bi00077a005

    Article  CAS  PubMed  Google Scholar 

  96. Fryxell KJ, Moon WJ (2005) CpG mutation rates in the human genome are highly dependent on local GC content. Mol Biol Evol 22(3):650–658. https://doi.org/10.1093/molbev/msi131

    Article  PubMed  Google Scholar 

  97. Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N (2002) Vanishing GC-rich isochores in mammalian genomes. Genetics 162:1837–1847 PMC1462357

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Keightley PD, Eyre-Walker A (2000) Deleterious mutations and the evolution of sex. Science 5490:331–333. https://doi.org/10.1126/science.290.5490.331

    Article  Google Scholar 

  99. Martinez-Arias R, Calafell F, Mateu E, Comas D, Andres A, Bertranpetit J (2001) Sequence variability of a human pseudogene. Genome Res 11:1071–1085. https://doi.org/10.1101/gr.167701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304 PMC1461236

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen FC, Vallender EJ, Wang H, Tzeng CS, Li WH (2001) Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J Hered 92:481–489. https://doi.org/10.1093/jhered/92.6.481

    Article  CAS  PubMed  Google Scholar 

  102. Mathews DJ, Kashuk C, Brightwell G, Eichler EE, Chakravarti A (2001) Sequence variation within the fragile X locus. Genome Res 11:1382–1391. https://doi.org/10.1101/gr.172601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu N, Zhao Z, Fu YX, Sambuughin N, Ramsay M, Jenkins T, Leskinen E, Patthy L, Jorde LB, Kuromori T, Li WH (2001) Global patterns of human DNA sequence variation in a 10-kb region on chromosome 1. Mol Biol Evol 18:214–222. https://doi.org/10.1093/oxfordjournals.molbev.a003795

    Article  CAS  PubMed  Google Scholar 

  104. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33:228–237. https://doi.org/10.1038/ng1090

    Article  CAS  PubMed  Google Scholar 

  105. Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, Axelrod N, Busam DA, Strausberg RL, Venter JC (2008) Genetic Variation in an Individual Human Exome. PLoS Genetics 4(8):e1000160

    Article  Google Scholar 

  106. Daca-Roszak P, Pfeifer A, Zebracka-Gala J, Rusinek D, Szybinska A, Jarzab B et al (2015) Impact of SNPs on methylation readouts by Illumina Infinium HumanMethylation450 BeadChip Array: implications for comparative population studies. BMC Genomics 16:1003. https://doi.org/10.1186/s12864-015-2202-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Galanter JM, Gignoux CR, Oh SS, Pino-Yanes M, Thakur N, Eng C et al (2017) Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. eLife 6:e20532. https://doi.org/10.7554/eLife.20532

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dunn J, Thabet S, Jo H (2015) Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis. Arterioscler Thromb Vasc Biol 35(7):1562–1569. https://doi.org/10.1161/ATVBAHA.115.305042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tost J (2010) DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker. Mol Biotech 44:71–81. https://doi.org/10.1007/978-1-59745-522-0_1

    Article  CAS  Google Scholar 

  110. Giuliani C, Sazzini M, Bacalini MG, Pirazzini C, Marasco E, Fontanesi E (2016) Epigenetic Variability across Human Populations: A Focus on DNA Methylation Profiles of the KRTCAP3, MAD1L1 and BRSK2 Genes. Genome Biol Evol 8(9):2760–2773. https://doi.org/10.1093/gbe/evw186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Terry MB, Ferris JS, Pilsner R, Flom JD, Tehranifar P, Sentellar RM et al (2008) Genomic DNA Methylation among Women in a Multiethnic New York City Birth Cohort. Cancer Epidemiol Biomarkers Prev 17:2306–2310. https://doi.org/10.1158/1055-9965.EPI-08-0312

    Article  CAS  PubMed  Google Scholar 

  112. Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Falchi M, Suhre K (2015) Association of DNA methylation with age, gender, and smoking in an Arab population. Clin Epigenetics 7(1):6. https://doi.org/10.1186/s13148-014-0040-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Reed K, Poulin ML, Yan L, Parissenti AM (2010) Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 397(1):96–106. https://doi.org/10.1016/j.ab.2009.10.021

    Article  CAS  PubMed  Google Scholar 

  114. Wojdacz TK, Møller TH, Thestrup BB, Kristensen LS, Hansen LL (2010) Limitations and advantages of MS-HRM and bisulfite sequencing for single locus methylation studies. Expert Rev Mol Diagn 10(5):575–580. https://doi.org/10.1586/erm.10.46

    Article  CAS  PubMed  Google Scholar 

  115. Wreczycka K, Gosdschan A, Yusuf D, Grüning B, Assenov Y, Akalin A (2017) Strategies for analyzing bisulfite sequencing data. J Biotechnol 261:105–115. https://doi.org/10.1016/j.jbiotec.2017.08.007

    Article  CAS  PubMed  Google Scholar 

  116. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF et al (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12:1–13. https://doi.org/10.1186/gb-2011-12-1-r10

    Article  CAS  Google Scholar 

  117. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, Plomin R, Mill J (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86(2):196–212. https://doi.org/10.1016/j.ajhg.2010.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cooper DN (2010) Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genomics 4:284. https://doi.org/10.1186/1479-7364-4-5-284

    Article  PubMed  PubMed Central  Google Scholar 

  119. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy M, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll S, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gervin K, Hammero M, Akselsen HE, Moe R, Nygard H, Brandt I et al (2011) Extensive variation and low heritability of DNA methylation identified in a twin study. Genome Res 21:1813–1821. https://doi.org/10.1101/gr.119685.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, MuTHER Consortium, Dermitzakis ET, McCarthy M, Mill J, Spector TD, Deloukas P (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genetics 8(4):e1002629. https://doi.org/10.1371/journal.pgen.1002629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE et al (2009) The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One 4:6767. https://doi.org/10.1371/journal.pone.0006767

    Article  CAS  Google Scholar 

  123. Breton CV, Salam MT, Gilliland FD (2011) Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase. Epigenetics 6(7):895–898. https://doi.org/10.4161/epi.6.7.15768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, Arepalli S, Dillman A, Rafferty IP, Troncoso J, Johnson R, Zielke HR, Ferrucci L, Longo DL, Cookson MR, Singleton AB (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genetics 6(5):e1000952. https://doi.org/10.1371/journal.pgen.1000952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Quon G, Lippert C, Heckerman D, Listgarten J (2013) Patterns of methylation heritability in a genome-wide analysis of four brain regions. Nucleic Acids Res 41(4):2095–2104. https://doi.org/10.1093/nar/gks1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rowlatt A, Hernández-Suárez G, Sanabria-Salas MC, Serrano-López M, Rawlik K, Hernandez-Illan E, Alenda C, Castillejo A, Soto JL, Haley CS, Tenesa A (2016) The heritability and patterns of DNA methylation in normal human colorectum. Hum Mol Genet 25(12):2600–2611. https://doi.org/10.1093/hmg/ddw072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zbiec-Piekarska R, Spolnicka M, Kupiec T, Makowska Z, Spas A, Parys-Proszek A et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  128. Thong Z, Chan XLS, Tan JYY, Loo ES, Syn CKC (2017) Evaluation of DNA methylation-based age prediction on blood. Forensic Sci Int Genet Suppl Series 6:e249–e251. https://doi.org/10.1016/j.fsigss.2017.09.095

    Article  Google Scholar 

  129. Park J-L, Kim JH, Seo E, Bae DH, Kim S-Y, Lee H-C et al (2016) Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci Int Genet 23:64–70. https://doi.org/10.1016/j.fsigen.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  130. Vidaki A, Ballard D, Aliferi A, Miller TH, Barron LP, Syndercombe Court D (2017) DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci Int Genet 28:225–236. https://doi.org/10.1016/j.fsigen.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Ghai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kader, F., Ghai, M. & Olaniran, A.O. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med 134, 1–20 (2020). https://doi.org/10.1007/s00414-019-02181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02181-3

Keywords

Navigation