Skip to main content
Log in

Temperature: the weak point of forensic entomology

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Measuring temperature is a key factor in forensic entomology. While noting factors to consider for a posteriori temperature estimation, many studies lack detailed methods or general rules allowing their integration into insect development-time calculations. This article proposes tools for determining the adequacy of weather station temperature datasets versus the local temperature experienced by carrion breeders. The idea is to start from a local scale (i.e., the cadaver) and gradually move to larger scales: at each step, the temperature can be increased, decreased or smoothed by environmental or biological factors. While a one-size-fits-all solution is not feasible for a complex and sensitive issue such as forensic meteorology, this checklist increases the reliability of minimum post-mortem interval (PMImin) estimation and the traceability of the proposed assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Smith KGV (1986) A manual of forensic entomology. Trustees of the British Museum (Natural history), London

    Google Scholar 

  2. Byrd DJH, Castner JL (2009) Forensic entomology: the utility of arthropods in legal investigations, 2nd revised edition. CRC Press Inc, Boca Raton, p 705

  3. Amendt J, Campobasso CP, Gaudry E et al (2006) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121:90–104. https://doi.org/10.1007/s00414-006-0086-x

    Article  Google Scholar 

  4. Archer MS (2004) The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci 49:553–559

    Article  Google Scholar 

  5. Hofer IMJ, Hart AJ, Martín-Vega D, Hall MJR (2017) Optimising crime scene temperature collection for forensic entomology casework. Forensic Sci Int 270:129–138. https://doi.org/10.1016/j.forsciint.2016.11.019

    Article  Google Scholar 

  6. Weatherbee CR, Pechal JL, Stamper T, Benbow ME (2017) Post-colonization interval estimates using multi-species Calliphoridae larval masses and spatially distinct temperature data sets: a case study. Insects 8:40. https://doi.org/10.3390/insects8020040

    Article  Google Scholar 

  7. Higley LG, Haskell N (2001) Insect development and forensic entomology. In: Byrd JH, Castner JL (eds) Forensic entomology. The utility of arthropods in legal investigations. CRC Press LLC, Boca Raton, pp 287–302

    Google Scholar 

  8. Ames C, Turner B (2003) Low temperature episodes in development of blowflies: implications for postmortem interval estimation. Med Vet Entomol 17:178–186. https://doi.org/10.1046/j.1365-2915.2003.00421.x

    Article  CAS  Google Scholar 

  9. Marchenko MI (2001) Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci Int 120:89–109. https://doi.org/10.1016/S0379-0738(01)00416-9

    Article  CAS  Google Scholar 

  10. Abdullah SR, Omar B, Bashah RMZRK, Nor FM, Swarhib MS, Othman HF, Wahid SA (2015) Forensic entomology of high-rise buildings in malaysia. Trop Biomed 32(2):291–299

  11. Ikemoto T, Egami C (2013) Mathematical elucidation of the Kaufmann effect based on the thermodynamic SSI model. Appl Entomol Zool 48:313–323. https://doi.org/10.1007/s13355-013-0190-6

    Article  Google Scholar 

  12. Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Env Entomol 21:689–699

    Article  Google Scholar 

  13. Henssge C, Madea B (2007) Estimation of the time since death. Forensic Sci Int 165:182–184

    Article  Google Scholar 

  14. Bourel B, Callet B, Hédouin V, Gosset D (2003) Flies eggs: a new method for the estimation of short-term post-mortem interval? Forensic Sci Int 135:27–34. https://doi.org/10.1016/S0379-0738(03)00157-9

    Article  Google Scholar 

  15. Mall G, Hubig M, Eckl M et al (2002) Modelling postmortem surface cooling in continuously changing environmental temperature. Leg Med 4:164–173. https://doi.org/10.1016/S1344-6223(02)00013-5

    Article  Google Scholar 

  16. Huntington TE, Higley LG, Baxendale FP (2007) Maggot development during morgue storage and its effect on estimating the post-mortem interval. J Forensic Sci 52:453–458

    Article  Google Scholar 

  17. Johnson AP, Mikac KM, Wallman JF (2013) Thermogenesis in decomposing carcasses. Forensic Sci Int 231:271–277. https://doi.org/10.1016/j.forsciint.2013.05.031

    Article  Google Scholar 

  18. May (1979) Insect thermoregulation. Annu Rev Entomol 24:313–349

    Article  Google Scholar 

  19. Sharanowski BJ, Walker EG, Anderson GS (2008) Insect succession and decomposition patterns on shaded and sunlit carrion in Saskatchewan in three different seasons. Forensic Sci Int 179:219–240

    Article  Google Scholar 

  20. Podhorna J, Aubernon C, Borkovcova M et al (2017) To eat or get heat: behavioral trade-offs between thermoregulation and feeding in gregarious necrophagous larvae. Insect Sci. https://doi.org/10.1111/1744-7917.12465

  21. Aubernon C, Boulay J, Hédouin V, Charabidzé D (2016) Thermoregulation in gregarious dipteran larvae: evidence of species-specific temperature selection. Entomol Exp Appl 160:101–108. https://doi.org/10.1111/eea.12468

    Article  Google Scholar 

  22. Charabidze D, Bourel B, Gosset D (2011) Larval-mass effect: characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci Int 211:61–66. https://doi.org/10.1016/j.forsciint.2011.04.016

    Article  Google Scholar 

  23. Heaton V, Moffatt C, Simmons T (2014) Quantifying the temperature of maggot masses and its relationship to decomposition. J Forensic Sci 59:676–682. https://doi.org/10.1111/1556-4029.12396

    Article  Google Scholar 

  24. Johnson AP, Wighton SJ, Wallman JF (2014) Tracking movement and temperature selection of larvae of two forensically important blow fly species within a “maggot mass”. J Forensic Sci 59:1586–1591. https://doi.org/10.1111/1556-4029.12472

    Article  Google Scholar 

  25. Kotzé Z, Villet MH, Weldon CW (2016) Heat accumulation and development rate of massed maggots of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J Insect Physiol 95:98–104. https://doi.org/10.1016/j.jinsphys.2016.09.009

    Article  Google Scholar 

  26. Rivers DB, Thompson C, Brogan R (2011) Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion. Bull Entomol Res 101:599–611. https://doi.org/10.1017/S0007485311000241

    Article  CAS  Google Scholar 

  27. Heaton V, Moffatt C, Simmons T (2018) The movement of fly (Diptera) larvae within a feeding aggregation. Can Entomol 150:1–8. https://doi.org/10.4039/tce.2018.9

    Article  Google Scholar 

  28. Heaton V (2014) Modelling the thermodynamics of maggot masses during decomposition. Dissertation, University of Central Lancashire

  29. Ceciliason A-S, Andersson MG, Lindström A, Sandler H (2018) Quantifying human decomposition in an indoor setting and implications for postmortem interval estimation. Forensic Sci Int 283:180–189. https://doi.org/10.1016/j.forsciint.2017.12.026

    Article  Google Scholar 

  30. MacMaster G (2006) Environmental forensics and its effects on investigations. PageFree Pub, Otsego

    Google Scholar 

  31. Scala JR, Wallace JR (2009) Forensic meteorology: the application of weather and climate. In: Forensic entomology the utility of arthropods in legal investigations, Second edn. CRC Press, Boca Raton, pp 519–538

    Google Scholar 

  32. Henssge C (1992) Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic Sci Int 54:51–66

    Article  CAS  Google Scholar 

  33. Amendt J, Richards CS, Campobasso CP et al (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392. https://doi.org/10.1007/s12024-010-9209-2

    Article  CAS  Google Scholar 

  34. Bugelli V, Toni C, Domenici R, Vanin S (2013) Meteorological data: “non proximus sed similis”. Presentation, 9th European association for Forensic Entomology annual meeting, Coimbra, Portugal

  35. Dourel L, Pasquerault T, Gaudry E, Vincent B (2010) Using estimated on-site ambient temperature has uncertain benefit when estimating postmortem interval. Psyche J Entomol 2010:1–7. https://doi.org/10.1155/2010/610639

    Article  Google Scholar 

  36. Johnson AP, Wallman JF, Archer MS (2012) Experimental and casework validation of ambient temperature corrections in forensic entomology*,†. J Forensic Sci 57:215–221. https://doi.org/10.1111/j.1556-4029.2011.01900.x

    Article  Google Scholar 

  37. Dabbs GR (2015) How should forensic anthropologists correct National Weather Service Temperature Data for use in estimating the postmortem interval? J Forensic Sci 60:581–587. https://doi.org/10.1111/1556-4029.12724

    Article  Google Scholar 

  38. Barry RG, Blanken PD (2016) Microclimate and Local Climate. University Press, Cambridge

    Book  Google Scholar 

  39. Archer MS, Jones SD, Wallman JF (2017) Delayed reception of live blowfly (Calliphora vicina and Chrysomya rufifacies) larval samples: implications for minimum postmortem interval estimates. Forensic Sci Res 3:1–13. https://doi.org/10.1080/20961790.2017.1408550

    Google Scholar 

  40. Thevan K, Ahmad AH, Rawi CSM, Singh B (2010) Growth of Chrysomya megacephala (Fabricius) maggots in a morgue cooler. J Forensic Sci 55:1656–1658. https://doi.org/10.1111/j.1556-4029.2010.01485.x

    Article  Google Scholar 

  41. Bugelli V, Campobasso CP, Verhoff MA, Amendt J (2017) Effects of different storage and measuring methods on larval length values for the blow flies (Diptera: Calliphoridae) Lucilia sericata and Calliphora vicina. Sci Justice 57:159–164

    Article  Google Scholar 

  42. Gaudry E, Dourel L (2013) Forensic entomology: implementing quality assurance for expertise work. Int J Legal Med 127:1031–1037. https://doi.org/10.1007/s00414-013-0892-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Charabidze.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charabidze, D., Hedouin, V. Temperature: the weak point of forensic entomology. Int J Legal Med 133, 633–639 (2019). https://doi.org/10.1007/s00414-018-1898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1898-1

Keywords

Navigation