Skip to main content
Log in

Postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in rabbits over 24 h

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The interpretation of postmortem drug levels is complicated by changes in drug blood levels in the postmortem period, a phenomena known as postmortem drug redistribution. We investigated the postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in a rabbit model. Heroin (1 mg/kg) was injected into anesthetised rabbit; after 1 h, an auricular vein blood sample was taken and the rabbit was euthanised. Following death rabbits were placed in a supine position at room temperature and divided into three groups namely (1) immediate autopsy, (2) autopsy after 30 minutes and (3) autopsy 24 h after death. Various samples which included femoral blood, cardiac blood, lung, liver, kidney, vitreous humour, subcutaneous and abdominal fat, liver, bone marrow and skeletal muscle were taken. The samples were analysed with a validated LC-MS/MS method. It was observed that within minutes there was a significant increase in free morphine postmortem femoral blood concentration compared to the antemortem sample (0.01 ± 0.01 to 0.05 ± 0.02 mg/L).Various other changes in free morphine and metabolite concentrations were observed during the course of the experiment in various tissues. Principal component analysis was used to investigate possible correlations between free morphine in the various samples. Some correlations were observed but gave poor predictions (>20 % error) when back calculating. The results suggest that rabbits are a good model for further studies of postmortem redistribution but that further study and understanding of the phenomena is required before accurate predictions of the blood concentration at the time of death are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (2013) The lethal burden of drug overdose. Lancet 382:833

  2. UN World drug report (2012) United Nations Publications

  3. Rook EJ, Huitema AD, van Den Brink W, van Ree JM, Beijnen JH (2006) Population pharmacokinetics of heroin and its major metabolites. Clin Pharmacokinet 45:401–417

    Article  CAS  PubMed  Google Scholar 

  4. Pounder DJ, Jones GR (1990) Post-mortem drug redistribution—a toxicological nightmare. Forensic Sci Int 45:253–263

    Article  CAS  PubMed  Google Scholar 

  5. Pounder DJ (1993) The nightmare of postmortem drug changes. Legal Med 1993:163–191

    Google Scholar 

  6. Koren G, MacLeod S (1985) Postmortem redistribution of digoxin in rats. J Forensic Sci 30:92–96

    Article  CAS  PubMed  Google Scholar 

  7. Hilberg T, Ripel A, Slørdal L, Bjørneboe A, Mørland J (1999) The extent of postmortem drug redistribution in a rat model. J Forensic Sci 44:956–962

    CAS  PubMed  Google Scholar 

  8. Anderson DT, Fritz KL, Muto JJ (1999) Distribution of mirtazapine (Remeron®) in thirteen postmortem cases. J Anal Toxicol 23:544–548

    Article  CAS  PubMed  Google Scholar 

  9. Sawyer WR, Forney RB (1988) Postmortem disposition of morphine in rats. Forensic Sci Int 38:259–273

    Article  CAS  PubMed  Google Scholar 

  10. Koren G, Klein J (1992) Postmortem redistribution of morphine in rats. Ther Drug Monit 14:461–463

    Article  CAS  PubMed  Google Scholar 

  11. Crandall CS, Kerrigan S, Aguero RL, LaValley J, McKinney PE (2006) The influence of collection site and methods on postmortem morphine concentrations in a porcine model. J Anal Toxicol 30:651–658

    Article  CAS  PubMed  Google Scholar 

  12. Tomcikova O, Bezek S, Durisova M, Faberova V, Zemanek M, Trnovec T (1984) Biliary excretion and enterohepatic circulation of two beta-adrenergic blocking drugs, exaprolol and propranolol, in rats. Biopharm Drug Dispos 5:153–162

    Article  CAS  PubMed  Google Scholar 

  13. De Letter E, De Paepe P, Clauwaert K, Belpaire F, Lambert W, Van Bocxlaer J, Piette M (2000) Is vitreous humour useful for the interpretation of 3, 4-methylenedioxymethamphetamine (MDMA) blood levels? Int J Legal Med 114:29–35

    Article  PubMed  Google Scholar 

  14. Rees KA, Pounder DJ, Osselton MD (2013) Distribution of opiates in femoral blood and vitreous humour in heroin/morphine-related deaths. Forensic Sci Int 226:152–159

    Article  CAS  PubMed  Google Scholar 

  15. Taylor K, Elliott S (2009) A validated hybrid quadrupole linear ion-trap LC–MS method for the analysis of morphine and morphine glucuronides applied to opiate deaths. Forensic Sci Int 187:34–41

    Article  CAS  PubMed  Google Scholar 

  16. Little RA (1970) Changes in the blood volume of the rabbit with age. J Physiol 208:485–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Brunet B, Doucet C, Venisse N, Hauet T, Hébrard W, Papet Y, Mauco G, Mura P (2006) Validation of large white pig as an animal model for the study of cannabinoids metabolism: application to the study of THC distribution in tissues. Forensic Sci Int 161:169–174

    Article  CAS  PubMed  Google Scholar 

  18. Brunet B, Hauet T, Hébrard W, Papet Y, Mauco G, Mura P (2010) Postmortem redistribution of THC in the pig. Int J Legal Med 124:543–549

    Article  PubMed  Google Scholar 

  19. De Letter EA, Clauwaert KM, Belpaire FM, Lambert WE, Van Bocxlaer JF, Piette MH (2002) Post-mortem redistribution of 3, 4-methylenedioxymethamphetamine (MDMA, “ecstasy”) in the rabbit. Int J Legal Med 116:216–224

    Article  PubMed  Google Scholar 

  20. Pélissier-Alicot A-L, Gaulier J-M, Dupuis C, Feuerstein M, Léonetti G, Lachâtre G, Marquet P (2006) Post-mortem redistribution of three beta-blockers in the rabbit. Int J Legal Med 120:226–232

    Article  PubMed  Google Scholar 

  21. Hédouin V, Bourel B, Martin-Bouyer L, Bécart A, Tournel G, Deveaux M, Gosset D (1999) Morphine perfused rabbits: a tool for experiments in forensic entomotoxicology. J Forensic Sci 44:347–350

    Article  PubMed  Google Scholar 

  22. Flanagan R, Amin A, Seinen W (2003) Effect of post-mortem changes on peripheral and central whole blood and tissue clozapine and norclozapine concentrations in the domestic pig (Sus scrofa). Forensic Sci Int 132:9–17

    Article  CAS  PubMed  Google Scholar 

  23. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224

    Article  CAS  PubMed  Google Scholar 

  24. Matuszewski B, Constanzer M, Chavez-Eng C (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

    Article  CAS  PubMed  Google Scholar 

  25. Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9:929–939

    Article  CAS  PubMed  Google Scholar 

  26. Pélissier-Alicot A-L, Gaulier J-M, Champsaur P, Marquet P (2003) Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol 27:533–544

    Article  PubMed  Google Scholar 

  27. Kuo CK, Hanioka N, Hoshikawa Y, Oguri K, Yoshimura H (1991) Species difference of site-selective glucuronidation of morphine. J Pharmacobiodyn 14:187–193

    Article  CAS  PubMed  Google Scholar 

  28. Seetohul LN, Scott SM, O'Hare WT, Ali Z, Islam M (2013) Discrimination of Sri Lankan black teas using fluorescence spectroscopy and linear discriminant analysis. J Sci Food Agric 93:2308–2314

    Article  CAS  PubMed  Google Scholar 

  29. Pragst F, Spiegel K, Leuschner U, Hager A (1999) Detection of 6-acetylmorphine in vitreous humor and cerebrospinal fluid—comparison with urinary analysis for proving heroin administration in opiate fatalities. J Anal Toxicol 23:168–172

    Article  CAS  PubMed  Google Scholar 

  30. Goldberger BA, Cone EJ, Grant TM, Caplan YH, Levine BS, Smialek JE (1994) Disposition of heroin and its metabolites in heroin-related deaths. J Anal Toxicol 18(1):22–28

    Article  CAS  PubMed  Google Scholar 

  31. Jenkins AJ, Keenan RM, Henningfield JE, Cone EJ (1994) Pharmacokinetics and pharmacodynamics of smoked heroin. J Anal Toxicol 18:317–330

    Article  CAS  PubMed  Google Scholar 

  32. Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, La Du BN (2002) Current progress on esterases: from molecular structure to function. Drug Metab Dispos 30:488–493

    Article  CAS  PubMed  Google Scholar 

  33. Cengiz S, Ulukan Ö, Ates I, Tugcu H (2006) Determination of morphine in postmortem rabbit bone marrow and comparison with blood morphine concentrations. Forensic Sci Int 156:91–94

    Article  CAS  PubMed  Google Scholar 

  34. Raikos N, Tsoukali H, Njau S (2001) Determination of opiates in postmortem bone and bone marrow. Forensic Sci Int 123:140–141

    Article  CAS  PubMed  Google Scholar 

  35. Rees KA, Jones NS, McLaughlin PA, Osselton MD (2012) The effect of sodium fluoride preservative and storage temperature on the stability of 6-acetylmorphine in horse blood, sheep vitreous and deer muscle. Forensic Sci Int 217:189–195

    Article  CAS  PubMed  Google Scholar 

  36. Tolliver SS, Hearn WL, Furton KG (2010) Evaluating the relationship between postmortem and antemortem morphine and codeine concentrations in whole blood. J Anal Toxicol 34:491–497

    Article  CAS  PubMed  Google Scholar 

  37. Sawyer WR, Steup DR, Martin BS, Forney RB (1988) Cardiac blood pH as a possible indicator of postmortem interval. J Forensic Sci 33:1439–1444

    CAS  PubMed  Google Scholar 

  38. Yoshitome K, Ishizu H, Miyaishi S (2010) Postmortem acidification of blood/organs induces an increase in flecainide concentration in cardiac blood and the contribution of the lungs to this increase. J Anal Toxicol 34:26–31

    Article  CAS  PubMed  Google Scholar 

  39. Hinderling PH, Hartmann D (2005) The pH dependency of the binding of drugs to plasma proteins in man. Ther Drug Monit 27:71–85

    Article  CAS  PubMed  Google Scholar 

  40. Gerostamoulos D, Beyer J, Staikos V, Tayler P, Woodford N, Drummer OH (2012) The effect of the postmortem interval on the redistribution of drugs: a comparison of mortuary admission and autopsy blood specimens. Forensic Sci Med Pathol 8:373–379

    Article  CAS  PubMed  Google Scholar 

  41. Baselt RC (2011) Disposition of toxic drugs and chemicals in man (8th Edition). Biomedical Publications Seal Beach, California

    Google Scholar 

  42. Schmidt C, Gossage B, Grinowski A, Martinez T (1996) Investigation of the postmortem redistribution of opiates. Proc West Pharmacol Soc 39:27–28

    CAS  PubMed  Google Scholar 

  43. Hadidi K, Oliver J (1998) Stability of morphine and buprenorphine in whole blood. Int J Legal Med 111:165–167

    Article  CAS  PubMed  Google Scholar 

  44. Pounder DJ (2003) The case of Dr. Shipman. Am J Forensic Med Pathol 24:219–226

    Article  PubMed  Google Scholar 

  45. Spiehler V, Cravey R, Richards R, Elliott H (1978) The distribution of morphine in the brain in fatal cases due to the intravenous administration of heroin. J Anal Toxicol 2:62–67

    Article  CAS  Google Scholar 

  46. Felby S, Christensen H, Lund A (1974) Morphine concentrations in blood and organs in cases of fatal poisoning. Forensic Sci 3:77–81

    Article  CAS  PubMed  Google Scholar 

  47. Chan S-C, Chan EM, Kaliciak H (1986) Distribution of morphine in body fluids and tissues in fatal overdose. J Forensic Sci 31:1487–1491

    Article  CAS  PubMed  Google Scholar 

  48. Bailey DN, Shaw RF (1982) Concentrations of basic drugs in postmortem human myocardium. Clin Toxicol 19:197–202

    CAS  Google Scholar 

  49. Crandall CS, Kerrigan S, Agüero Blau RL, LaValley J, Zumwalt R, McKinney PE (2006) The influence of site of collection on postmortem morphine concentrations in heroin overdose victims. J Forensic Sci 51:413–420

    Article  CAS  PubMed  Google Scholar 

  50. Skopp G, Ganßmann B, Mattern R, Aderjan R (1996) Postmortem distribution pattern of morphine and morphine glucuronides in heroin overdose. Int J Legal Med 109:118–124

    Article  CAS  PubMed  Google Scholar 

  51. Gerostamoulos J, Drummer OH (2000) Postmortem redistribution of morphine and its metabolites. J Forensic Sci 45:843–845

    Article  CAS  PubMed  Google Scholar 

  52. Carrupt PA, Testa B, Bechalany A, El Tayar N, Descas P, Perrissoud D (1991) Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 34:1272–1275

    Article  CAS  PubMed  Google Scholar 

  53. Skopp G, Pötsch L, Klingmann A, Mattern R (2001) Stability of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in fresh blood and plasma and postmortem blood samples. J Anal Toxicol 25:2–7

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Maskell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskell, P.D., Albeishy, M., De Paoli, G. et al. Postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in rabbits over 24 h. Int J Legal Med 130, 519–531 (2016). https://doi.org/10.1007/s00414-015-1185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1185-3

Keywords

Navigation