Skip to main content
Log in

Postmortem distribution and redistribution of synthetic cathinones

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

Synthetic cathinones are powerful psychostimulants that have been associated with fatal intoxications. Because of changes that take place following death, postmortem toxicology results require careful interpretation. The purpose of this study was to evaluate the distribution of synthetic cathinones in postmortem specimens in a series of 50 cathinone-positive fatalities.

Methods

Liquid chromatography–quadrupole time-of-flight-mass spectrometry was used to quantitatively identify cathinones in central blood (n = 51), peripheral blood (n = 31), urine (n = 33), liver (n = 22), vitreous humor (n = 1) and stomach contents (n = 1). The distribution of cathinones and the potential for postmortem redistribution was assessed.

Results

Among the 50 cases investigated, a total of nine synthetic cathinones (α-PVP, ethylone, methylone, butylone, MDPV, methedrone, pentylone, 4-MEC, and MDPBP) were identified in 139 specimens. The number of specimens per case ranged from one to six. In cases that included central blood or liver, together with a peripheral blood source, the central/peripheral (C/P) or liver/peripheral (L/P) ratio was calculated to estimate the potential for postmortem redistribution (n = 21 C/P; n = 11 L/P). Methylone and ethylone appeared to exhibit the greatest potential for postmortem redistribution, producing C/P ratios of 4.0 (1.5–6.1) and 2.9 (0.5–9.2), respectively. In contrast, the C/P ratio for α-PVP was 1.1 (0.5–1.9). Differences in C/P ratios between methylone and α-PVP were statistically significant (α = 0.05).

Conclusions

Although synthetic cathinones may exhibit low to moderate postmortem redistribution, significant variability exists due to site- and time-dependent factors. This, in combination with their overall instability, necessitates careful interpretation of postmortem toxicology results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cook DS, Braithwaite RA, Hale KA (2000) Estimating antemortem drug concentrations from postmortem blood samples: the influence of postmortem redistribution. J Clin Pathol 53:282–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pounder DJ, Jones GR (1990) Post-mortem drug redistribution—a toxicological nightmare. Forensic Sci Int 45:253–263

    Article  PubMed  CAS  Google Scholar 

  3. Jones GR, Pounder DJ (1987) Site dependence of drug concentrations in postmortem blood—a case study. J Anal Toxicol 11:186–190

    Article  PubMed  CAS  Google Scholar 

  4. McIntyre IM, Hamm CE, Sherrard JL, Gary RD, Burton CG, Mena O (2015) Acute 3,4-methylenedioxy-N-ethylcathinone (ethylone) intoxication and related fatality: a case report with postmortem concentrations. J Anal Toxicol 39:225–228

    Article  PubMed  CAS  Google Scholar 

  5. Dinis-Oliveira RJ, Carvalho F, Duarte JA, Remião F, Marques A, Santos A, Magalhães T (2010) Collection of biological samples in forensic toxicology. Toxicol Mech Methods 20:363–414

    Article  PubMed  CAS  Google Scholar 

  6. Drummer OH (2004) Postmortem toxicology of drugs of abuse. Forensic Sci Int 142:101–113

    Article  PubMed  CAS  Google Scholar 

  7. Barnhart FE, Fogacci JR, Reed DW (1999) Methamphetamine—a study of postmortem redistribution. J Anal Toxicol 23:69–70

    Article  PubMed  CAS  Google Scholar 

  8. Pélissier-Alicot A-L, Gaulier J-M, Champsaur P, Marquet P (2003) Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol 27:533–544

    Article  PubMed  Google Scholar 

  9. Skopp G (2010) Postmortem toxicology. Forensic Sci Med Pathol 6:314–325

    Article  PubMed  CAS  Google Scholar 

  10. Baselt RC (2017) Disposition of toxic drugs and chemicals in man, 11th edn. Biomedical Publications, Seal Beach

    Google Scholar 

  11. Logan B, Weiss E, Harruff R (1996) Case report: distribution of methamphetamine in a massive fatal ingestion. J Forensic Sci 41:322–323

    PubMed  CAS  Google Scholar 

  12. McIntyre I, Hamm C, Bader E (2011) Postmortem methamphetamine distribution. J Forensic Res 2:1–3

    Article  Google Scholar 

  13. Elliott SP (2005) MDMA and MDA concentrations in antemortem and postmortem specimens in fatalities following hospital admission. J Anal Toxicol 29:296–300

    Article  PubMed  CAS  Google Scholar 

  14. Dams R, De Letter EA, Mortier KA, Cordonnier JA, Lambert WE, Piette MHA, Van Calenbergh S, De Leenheer AP (2003) Fatality due to combined use of the designer drugs MDMA and PMA: a distribution study. J Anal Toxicol 27:318–323

    Article  PubMed  CAS  Google Scholar 

  15. Rohrig TP, Prouty RW (1992) Tissue distribution of methylenedioxymethamphetamine. J Anal Toxicol 16:52–53

    Article  PubMed  CAS  Google Scholar 

  16. De Letter EA, Bouche M-PLA, Van Bocxlaer JF, Lambert WE, Piette MHA (2004) Interpretation of a 3,4-methylenedioxymethamphetamine (MDMA) blood level: discussion by means of a distribution study in two fatalities. Forensic Sci Int 141:85–90

    Article  PubMed  CAS  Google Scholar 

  17. De Letter EA, Clauwaert KM, Lambert WE, Van Bocxlaer JF, De Leenheer AP, Piette MHA (2002) Distribution study of 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine in a fatal overdose. J Anal Toxicol 26:113–118

    Article  PubMed  Google Scholar 

  18. Kennedy MC (2010) Post-mortem drug concentrations. Intern Med J 40:183–187

    Article  PubMed  CAS  Google Scholar 

  19. Zhou M-J, Bouazzaoui S, Jones LE, Goodrich P, Bell SEJ, Sheldrake GN, Horton PN, Coles SJ, Fletcher NC (2015) Isolation and structural determination of non-racemic tertiary cathinone derivatives. Org Biomol Chem 13:9629–9636

    Article  PubMed  CAS  Google Scholar 

  20. Gibbons S, Zloh M (2010) An analysis of the ‘legal high’ mephedrone. Bioorg Med Chem Lett 20:4135–4139

    Article  PubMed  CAS  Google Scholar 

  21. Rojek S, Kłys M, Strona M, Maciów M, Kula K (2012) “Legal highs”—toxicity in the clinical and medico-legal aspect as exemplified by suicide with bk-MBDB administration. Forensic Sci Int 222:e1–e6

    Article  PubMed  CAS  Google Scholar 

  22. Marinetti LJ, Antonides HM (2013) Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and interpretation of results. J Anal Toxicol 37:135–146

    Article  PubMed  CAS  Google Scholar 

  23. Kesha K, Boggs CL, Ripple MG, Allan CH, Levine B, Jufer-Phipps R, Doyon S, Chi P, Fowler DR (2013) Methylenedioxypyrovalerone (“bath salts”), related death: case report and review of the literature. J Forensic Sci 58:1654–1659

    Article  PubMed  CAS  Google Scholar 

  24. Shimomura ET, Briones AJ, Warren WS, Addison JW, Knittel JL, Shoemaker SA, King TD, Bosy TZ (2016) Case report of methylone, oxymorphone and ethanol in a fatality case with tissue distribution. J Anal Toxicol 40:543–545

    Article  PubMed  CAS  Google Scholar 

  25. Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee CC, Garg U, Pietak BR (2012) Three fatal intoxications due to methylone. J Anal Toxicol 36:444–451

    Article  PubMed  CAS  Google Scholar 

  26. Cawrse BM, Levine B, Jufer RA, Fowler DR, Vorce SP, Dickson AJ, Holler JM (2012) Distribution of methylone in four postmortem cases. J Anal Toxicol 36:434–439

    Article  PubMed  CAS  Google Scholar 

  27. Barrios L, Grison-Hernando H, Boels D, Bouquie R, Monteil-Ganiere C, Clement R (2016) Death following ingestion of methylone. Int J Legal Med 130:381–385

    Article  PubMed  CAS  Google Scholar 

  28. Potocka-Banaś B, Janus T, Majdanik S, Banaś T, Dembińska T, Borowiak K (2017) Fatal intoxication with α-PVP, a synthetic cathinone derivative. J Forensic Sci 62:553–556

    Article  PubMed  CAS  Google Scholar 

  29. Hasegawa K, Suzuki O, Wurita A, Minakata K, Yamagishi I, Nozawa H, Gonmori K, Watanabe K (2014) Postmortem distribution of α-pyrrolidinovalerophenone and its metabolite in body fluids and solid tissues in a fatal poisoning case measured by LC-MS-MS with the standard addition method. Forensic Toxicol 32:225–234

    Article  CAS  Google Scholar 

  30. Wyman JF, Lavins ES, Engelhart D, Armstrong EJ, Snell KD, Boggs PD, Taylor SM, Norris RN, Miller FP (2013) Postmortem tissue distribution of MDPV following lethal intoxication by “bath salts”. J Anal Toxicol 37:182–185

    Article  PubMed  CAS  Google Scholar 

  31. McIntyre IM, Hamm CE, Aldridge L, Nelson CL (2013) Acute methylone intoxication in an accidental drowning—a case report. Forensic Sci Int 231:e1–e3

    Article  PubMed  CAS  Google Scholar 

  32. Sykutera M, Cychowska M, Bloch-Boguslawska E (2015) A fatal case of pentedrone and α-pyrrolidinovalerophenone poisoning. J Anal Toxicol 39:324–329

    Article  PubMed  CAS  Google Scholar 

  33. McIntyre IM (2014) Liver and peripheral blood concentration ratio (L/P) as a marker of postmortem drug redistribution: a literature review. Forensic Sci Med Pathol 10:91–96

    Article  PubMed  CAS  Google Scholar 

  34. Glicksberg L, Bryand K, Kerrigan S (2016) Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. J Chromatogr B 1035:91–103

    Article  CAS  Google Scholar 

  35. Scientific Working Group for Forensic Toxicology (SWGTOX) (2013) Standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474

    Article  CAS  Google Scholar 

  36. Adamowicz P, Tokarczyk B, Stanaszek R, Slopianka M (2013) Fatal mephedrone intoxication—a case report. J Anal Toxicol 37:37–42

    Article  PubMed  CAS  Google Scholar 

  37. Dalpe-Scott M, Degouffe M, Garbutt D, Drost M (1995) A comparison of drug concentrations in postmortem cardiac and peripheral blood in 320 cases. Can Soc Forensic Sci J 28:113–121

    Article  Google Scholar 

  38. Roettger JR (1990) The importance of blood collection site for the determination of basic drugs: a case with fluoxetine and diphenhydramine overdose. J Anal Toxicol 14:191–192

    Article  PubMed  CAS  Google Scholar 

  39. Moriya F, Hashimoto Y (1999) Redistribution of basic drugs into cardiac blood from surrounding tissues during early stages postmortem. J Forensic Sci 44:10–16

    PubMed  CAS  Google Scholar 

  40. Glicksberg L, Kerrigan S (2017) Synthetic cathinone stability in blood. J Anal Toxicol 41:711–719

    Article  PubMed  CAS  Google Scholar 

  41. Glicksberg L, Kerrigan S (2017) Stability of synthetic cathinones in urine. J Anal Toxicol. https://doi.org/10.1093/jat/bkx091

    Article  PubMed  Google Scholar 

  42. Fura A, Harper TW, Zhang H, Fung L, Shyu WC (2003) Shift in pH of biological fluids during storage and processing: effect on bioanalysis. J Pharm Biomed Anal 32:513–522

    Article  PubMed  CAS  Google Scholar 

  43. Cook JD, Strauss KA, Caplan YH, LoDico CP, Bush DM (2007) Urine pH: the effects of time and temperature after collection. J Anal Toxicol 31:486–496

    Article  PubMed  CAS  Google Scholar 

  44. Ferner RE (2008) Post-mortem clinical pharmacology. Br J Clin Pharmacol 66:430–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Award No. 2013-R2-CX-K006 awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Kerrigan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving biological samples obtained from human decedents were in accordance with the ethical standards of the Sam Houston State University Institutional Review Board (Protection of Human Subjects Committee) in accordance with 45CFR46.101(b) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glicksberg, L., Winecker, R., Miller, C. et al. Postmortem distribution and redistribution of synthetic cathinones. Forensic Toxicol 36, 291–303 (2018). https://doi.org/10.1007/s11419-018-0403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-018-0403-3

Keywords

Navigation