Skip to main content

Advertisement

Log in

Probabilistic graphical models to deal with age estimation of living persons

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Due to the rise of criminal, civil and administrative judicial situations involving people lacking valid identity documents, age estimation of living persons has become an important operational procedure for numerous forensic and medicolegal services worldwide. The chronological age of a given person is generally estimated from the observed degree of maturity of some selected physical attributes by means of statistical methods. However, their application in the forensic framework suffers from some conceptual and practical drawbacks, as recently claimed in the specialised literature. The aim of this paper is therefore to offer an alternative solution for overcoming these limits, by reiterating the utility of a probabilistic Bayesian approach for age estimation. This approach allows one to deal in a transparent way with the uncertainty surrounding the age estimation process and to produce all the relevant information in the form of posterior probability distribution about the chronological age of the person under investigation. Furthermore, this probability distribution can also be used for evaluating in a coherent way the possibility that the examined individual is younger or older than a given legal age threshold having a particular legal interest. The main novelty introduced by this work is the development of a probabilistic graphical model, i.e. a Bayesian network, for dealing with the problem at hand. The use of this kind of probabilistic tool can significantly facilitate the application of the proposed methodology: examples are presented based on data related to the ossification status of the medial clavicular epiphysis. The reliability and the advantages of this probabilistic tool are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The English version of the Swiss Civil code can be read at the following internet address: http://www.admin.ch/ch/e/rs/2/210.en.pdf (last access: 04th of February 2015).

  2. A free demonstrative version of this software—Hugin Lite—is available on the website www.hugin.com.

  3. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Wien, Austria. URL: http://www.R-project.org/.

  4. The expression used to compile the CPT of the node “C = si” is the following in the Hugin language: Distribution (1/(1 + exp (−(18.39 − 1.35 × A))), 1/(1 + exp (−(21.12 − 1.17 × A))) × (1 − 1/(1 + exp (−(18.39 − 1.35 × A)))), 1/(1 + exp (−(30.72 − 1.30 × A))) × (1 − 1 / (1 + exp (−(18.39 − 1.35 × A)))) × (1 − 1/(1 + exp (−(21.12 − 1.17 × A)))), (1 − 1/(1 + exp (−(30.72 − 1.30 × A)))) × (1 − 1/(1 + exp (−(18.39 − 1.35 × A)))) × (1 − 1/(1 + exp (−(21.12 − 1.17 × A))))).

  5. The expression used for the node “C = si” became: Distribution (1/(1 + exp (−(α 1 − β 1 × A))), 1/(1 + exp (−(α 2 − β 2 × A))) × (1 − 1/(1 + exp (−(α 1 − β 1 × A)))), 1/(1 + exp (−(α 3 − β 3 × A))) × (1 − 1 / (1 + exp (−(α1 − β 1 × A)))) × (1 − 1 / (1 + exp (−(α 2 − β 2 × A)))), (1 − 1 / (1 + exp (−(α 3 − β 3 × A)))) × (1 − 1 / (1 + exp (−(α 1 − β 1 × A)))) × (1 − 1 / (1 + exp (−(α 2 − β2 × A))))).

References

  1. Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors. Part I. General considerations. Forensic Sci Int 159(1):S61–S64

    Article  PubMed  Google Scholar 

  2. Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165:178–181

    Article  CAS  PubMed  Google Scholar 

  3. Schmeling A, Black S (2010) An introduction to the history of age estimation in the living. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 1–18

    Chapter  Google Scholar 

  4. Baccino E, Cunha E, Cattaneo C (2013) Aging the dead and the living. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences, vol 1. Academic, Waltham, pp 42–48

    Chapter  Google Scholar 

  5. Schmeling A (2013) Forensic age estimation. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences, vol 3. Academic, Waltham, pp 133–138

    Chapter  Google Scholar 

  6. Black S, Maat G (2010) Principles of physical age estimation. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 77–94

    Chapter  Google Scholar 

  7. Cameron N, Jones LL (2010) Growth, maturation and age. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 95–129

    Chapter  Google Scholar 

  8. Hackman SL, Buck A, Black S (2010) Age evaluation from the skeleton. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 202–235

    Chapter  Google Scholar 

  9. Taylor J, Blenkin M (2010) Age evaluation and odontology in the living. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 176–201

    Chapter  Google Scholar 

  10. Schmeling A, Schmidt S, Schulz R, Olze A, Reisinger W, Vieth V (2010) Practical imaging techniques for age evaluation. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 130–149

    Chapter  Google Scholar 

  11. Corradi F, Pinchi V, Barsanti I, Garatti S (2013) Probabilistic classification of age by third molar development: the use of soft evidence. J Forensic Sci 58(1):51–59

    Article  PubMed  Google Scholar 

  12. Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19:9–17

    CAS  PubMed  Google Scholar 

  13. Mesotten K, Gunst K, Carbonez A, Willems G (2002) Dental age estimation and third molars: a preliminary study. Forensic Sci Int 129:100–115

    Article  Google Scholar 

  14. Gunst K, Mesotten K, Carbonez A, Willems G (2003) Third molar root development in relation to chronological age: a large sample sized retrospective study. Forensic Sci Int 136:52–57

    Article  CAS  PubMed  Google Scholar 

  15. Chaillet N, Nyström M, Kataja M, Demirjian A (2004) Dental maturity curves in Finnish children: Demirjian’s method revisited and polynomial functions for age estimation. J Forensic Sci 49(6):1324–1331

    Article  PubMed  Google Scholar 

  16. Olze A, Taniguchi M, Schmeling A, Zhu B-L, Yamada Y, Maeda H, Geserick G (2003) Comparative study on the chronology of third molar mineralization in a Japanese and a German population. Leg Med 5(Supplement 1):S256–S260

    Article  Google Scholar 

  17. Schmeling A, Schulz R, Reisinger W, Mühler M, Wernecke K-D, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118(1):5–8

    Article  PubMed  Google Scholar 

  18. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med 124:149–154

    Article  PubMed  Google Scholar 

  19. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124:321–325

    Article  PubMed  Google Scholar 

  20. Lucy D (2010) The presentation of results and statistics for legal purposes. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 267–283

    Chapter  Google Scholar 

  21. Cameriere R, Ferrante L, Angelis D, Scarpino F, Galli F (2008) The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18 year olds in living subjects. Int J Legal Med 122(6):493–497

    Article  CAS  PubMed  Google Scholar 

  22. Knell B, Ruhstaller P, Prieels F, Schmeling A (2009) Dental age diagnostics by means of radiographical evaluation of the growth stages of lower wisdom teeth. Int J Legal Med 123:465–469

    Article  CAS  PubMed  Google Scholar 

  23. Lucy D, Aykroyd RG, Pollard AM, Solheim T (1996) A Bayesian approach to adult human age estimation from dental observations by Johanson's age changes. J Forensic Sci 41(2):189–194

    Article  CAS  PubMed  Google Scholar 

  24. Aykroyd RG, Lucy D, Pollard AM, Solheim T (1997) Regression analysis in adult age estimation. Am J Phys Anthropol 104:259–265

    Article  CAS  PubMed  Google Scholar 

  25. Acharya A (2011) Accuracy of predicting 18 years of age from mandibular third molar development in an Indian sample using Demirjian’s ten-stage criteria. Int J Legal Med 125(2):227–233

    Article  PubMed  Google Scholar 

  26. Corradi F, Pinchi V, Barsanti I, Manca R, Garatti S (2013) Optimal age classification of young individuals based on dental evidence in civil and criminal proceedings. Int J Legal Med 127:1157–1164

    Article  PubMed  Google Scholar 

  27. Braga J, Heuze Y, Chabadel O, Sonan NK, Gueramy A (2005) Non-adult dental age assessment: correspondence analysis and linear regression versus Bayesian predictions. Int J Legal Med 119:260–274

    Article  CAS  PubMed  Google Scholar 

  28. Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124(1):35–42

    Article  CAS  PubMed  Google Scholar 

  29. Taroni F, Biedermann A (2013) Bayesian networks. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences, vol 1. Academic, Waltham, pp 351–356

    Chapter  Google Scholar 

  30. Taroni F, Biedermann A, Bozza S, Garbolino P, Aitken C (2014) Bayesian networks for probabilistic inference and decision analysis in forensic science, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  31. Schmeling A, Grundman C, Fuhrmann A, Kaatsch H-J, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rösing FW, Rötzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122:457–460

    Article  CAS  PubMed  Google Scholar 

  32. Lucy D, Aykroyd RG, Pollard AM (2002) Nonparametric calibration for age estimation. Appl Stat 51(2):183–196

    Google Scholar 

  33. Aggrawal A, Setia P, Gupta A, Busuttil A (2010) External soft tissue indicators of age from birth to adulthood. In: Black S, Aggrawal A, Payne-James J (eds) Age estimation in the living: the practitioner’s guide. John Wiley & Sons, Hoboken, pp 150–175

    Chapter  Google Scholar 

  34. Kreitner K-F, Schweden FJ, Riepert T, Nafe B, Thelen M (1998) Bone age determination based on the study of the medial extremity of the clavicle. Eur Radiol 8:1116–1122

    Article  CAS  PubMed  Google Scholar 

  35. Owings Webb PA, Myers Suchey JM (1985) Epiphyseal union of the anterior iliac crest and medial clavicle in a modern multiracial sample of American males and females. Am J Phys Anthropol 68:457–466

    Article  Google Scholar 

  36. Aitken CGG, Taroni F (2004) Statistics and the evaluation of evidence for forensic scientists, 2nd edn. John Wiley & Sons, Chichester

    Book  Google Scholar 

  37. Pourret O, Naïm P, Marcot B (2008) Bayesian networks: a practical guide to applications. John Wiley & Sons, Chichester

    Book  Google Scholar 

  38. Biedermann A, Taroni F, Bozza S (2009) Implementing statistical learning methods through Bayesian networks. Part 1: a guide to Bayesian parameter estimation using forensic science data. Forensic Sci Int 193(1):63–71

    Article  CAS  PubMed  Google Scholar 

  39. Azzalini A, Capitanio A (2014) The skew-normal and related families. Cambridge University Press, New York

    Google Scholar 

  40. Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JV (eds) Paleodemography. Age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106

    Chapter  Google Scholar 

  41. Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH (2008) Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci 53(3):541–557

    Article  PubMed  Google Scholar 

  42. Tutz G (2012) Regression for categorical data. Cambridge University Press, New York

    Google Scholar 

  43. Yee TW (2010) The VGAM package for categorical data analysis. J Stat Softw 32(10):1–34

    Article  Google Scholar 

  44. Taroni F, Bozza S, Biedermann A, Garbolino P, Aitken C (2010) Data analysis in forensic science: a Bayesian decision perspective. John Wiley & Sons, Chichester

    Book  Google Scholar 

  45. Biedermann A, Bozza S, Taroni F (2009) Probabilistic evidential assessment of gunshot residue particle evidence (Part I): likelihood ratio calculation and case pre-assessment using Bayesian networks. Forensic Sci Int 191:24–35

    Article  CAS  PubMed  Google Scholar 

  46. Howson C (2002) Bayesianism in statistics. In: Swinburne R (ed) Bayes’s theorem. Proceedings of the British academy. Oxford University Press, Oxford, pp 39–69

    Google Scholar 

  47. Bhat VJ, Kamath GP (2007) Age estimation from root development of mandibular third molars in comparison with skeletal age of wrist joint. Am J Forensic Med Pathol 28(3):238–241

    Article  PubMed  Google Scholar 

  48. Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach. Forensic Sci Int 212:273.e271–275

    Article  Google Scholar 

  49. Santoro V, De Donno A, Marrone M, Campobasso CP, Introna F (2009) Forensic age estimation of living individuals: a retrospective analysis. Forensic Sci Int 193:129.e121–129.e124

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the collaborators from the Centre Universitaire Romand de Médecine Légale (CURML) for useful advices and the Swiss National Foundation for supporting a small part of this research (grant no. PP00P1_123358). The authors are also grateful to the Editor and the anonymous reviewers for their fruitful comments.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Sironi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sironi, E., Gallidabino, M., Weyermann, C. et al. Probabilistic graphical models to deal with age estimation of living persons. Int J Legal Med 130, 475–488 (2016). https://doi.org/10.1007/s00414-015-1173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1173-7

Keywords

Navigation