Skip to main content

Advertisement

Log in

Age estimation in children and young adolescents for forensic purposes using fourth cervical vertebra (C4)

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the applicability of using the growth of the body of C4 vertebra for the estimation of age in children and young adolescents. We used the fact that the proportions between the radiologic projections of the posterior and anterior sides of the C4 vertebral body, which forms a trapezoidal shape, differ with age: in younger individuals, the posterior side is higher, whereas in older individuals, the projections of the sides of the vertebral body form a rectangular shape with the two sides equal or with the anterior side slightly higher. Cephalograms of 444 Italian subjects (214 female and 230 male individuals) aged between 5 and 15 years and with no obvious development abnormalities were analyzed. The projections of the anterior side (a) and of the posterior side (b) of each C4 body were measured, and their ratio (Vba), as a value of the C4 body development, was used for age estimation. Distribution of the Vba suggested that it does not change after 13 years in female and 14 years in male subjects. Consequently, we restricted our analysis of the Vba growing model until 14 years in both sexes. We used a Bayesian calibration method to estimate chronological age as function of Vba as a predicting variable. The intra- and inter-observer agreement was satisfactory, using intra-class correlation coefficient of Vba on 30 randomly selected cephalograms. The mean absolute errors were 1.34 years (standard deviation 0.95) and 1.01 years (standard deviation 0.71), and the mean inter-quartile ranges of the calibrating distribution were 2.32 years (standard deviation 0.25) in male and 1.72 years (standard deviation 0.39) in female individuals, respectively. The slopes of the regression of the estimated age error to chronological age were 0.02 in male and 0.06 in female individuals, where both values did not result significantly different from 0 (p > 0.12). In conclusion, although our Bayesian calibration method might not really outperform the classical regression models in the precision of its estimates, it appears to be more robust, to greatly reduce the typical bias inherent in the regression model approach, and to have the ability to incorporate multiple predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cipriani D (2009) Children’s rights and the minimum age of criminal responsibility: a global perspective. Ashgate Publishing, Farnham

    Google Scholar 

  2. Bishop DM (2000) Juvenile offenders in the adult criminal justice system. Crime Justice 27:81–167

    Google Scholar 

  3. Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165(2–3):178–181. doi:10.1016/j.forsciint.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  4. Schmeling A, Olze A, Reisinger W, Geserick G (2001) Age estimation of living people undergoing criminal proceedings. Lancet 358(9276):89–90. doi:10.1016/S0140-6736(01)05379-X

    Article  CAS  PubMed  Google Scholar 

  5. Schmeling A, Olze A, Reisinger W, Geserick G (2004) Forensic age diagnostics of living people undergoing criminal proceedings. Forensic Sci Int 144(2–3):243–245. doi:10.1016/j.forsciint.2004.04.059

    Article  CAS  PubMed  Google Scholar 

  6. Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors. Part I. General considerations. Forensic Sci Int 159(Suppl 1):S61–S64. doi:10.1016/j.forsciint.2006.02.017

    Article  PubMed  Google Scholar 

  7. Thevissen PW, Kvaal SI, Willems G (2012) Ethics in age estimation of unaccompanied minors. J Forensic Odontostomatol 30(Suppl 1):84–102

    PubMed  Google Scholar 

  8. Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Legal Med 126(2):285–292. doi:10.1007/s00414-011-0639-5

    Article  CAS  PubMed  Google Scholar 

  9. Cameriere R, Brogi G, Ferrante L, Mirtella D, Vultaggio C, Cingolani M, Fornaciari G (2006) Reliability in age determination by pulp/tooth ratio in upper canines in skeletal remains. J Forensic Sci 51(4):861–864. doi:10.1111/j.1556-4029.2006.00159.x

    Article  PubMed  Google Scholar 

  10. Cameriere R, De Luca S, Aleman I, Ferrante L, Cingolani M (2012) Age estimation by pulp/tooth ratio in lower premolars by orthopantomography. Forensic Sci Int 214(1–3):105–112. doi:10.1016/j.forsciint.2011.07.028

    Article  PubMed  Google Scholar 

  11. Cameriere R, Brkic H, Ermenc B, Ferrante L, Ovsenik M, Cingolani M (2008) The measurement of open apices of teeth to test chronological age of over 14-year olds in living subjects. Forensic Sci Int 174(2–3):217–221. doi:10.1016/j.forsciint.2007.04.220

    Article  PubMed  Google Scholar 

  12. Ambarkova V, Galic I, Vodanovic M, Biocina-Lukenda D, Brkic H (2014) Dental age estimation using Demirjian and Willems methods: cross sectional study on children from the Former Yugoslav Republic of Macedonia. Forensic Sci Int 234(187):e181–e187. doi:10.1016/j.forsciint.2013.10.024

    Google Scholar 

  13. Thevissen PW, Fieuws S, Willems G (2010) Human third molars development: comparison of 9 country specific populations. Forensic Sci Int 201(1–3):102–105. doi:10.1016/j.forsciint.2010.04.054

    Article  CAS  PubMed  Google Scholar 

  14. Liversidge HM (2008) Predicting mandibular third molar agenesis from second molar formation. Acta Stomatol Croat 42(4):311–317

    Google Scholar 

  15. Galic I, Vodanovic M, Cameriere R, Nakas E, Galic E, Selimovic E, Brkic H (2011) Accuracy of Cameriere, Haavikko, and Willems radiographic methods on age estimation on Bosnian-Herzegovian children age groups 6–13. Int J Legal Med 125(2):315–321. doi:10.1007/s00414-010-0515-8

    Article  PubMed  Google Scholar 

  16. Galic I, Vodanovic M, Jankovic S, Mihanovic F, Nakas E, Prohic S, Galic E, Brkic H (2013) Dental age estimation on Bosnian-Herzegovinian children aged 6–14 years: evaluation of Chaillet’s international maturity standards. J Forensic Legal Med 20(1):40–45. doi:10.1016/j.jflm.2012.04.037

    Article  Google Scholar 

  17. Thevissen PW, Galiti D, Willems G (2012) Human dental age estimation combining third molar(s) development and tooth morphological age predictors. Int J Legal Med 126(6):883–887. doi:10.1007/s00414-012-0755-x

    Article  CAS  PubMed  Google Scholar 

  18. Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124(1):35–42. doi:10.1007/s00414-009-0329-8

    Article  CAS  PubMed  Google Scholar 

  19. Garamendi PM, Landa MI, Botella MC, Aleman I (2011) Forensic age estimation on digital X-ray images: medial epiphyses of the clavicle and first rib ossification in relation to chronological age. J Forensic Sci 56(Suppl 1):S3–S12. doi:10.1111/j.1556-4029.2010.01626.x

    Article  PubMed  Google Scholar 

  20. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124(4):321–325. doi:10.1007/s00414-010-0448-2

    Article  PubMed  Google Scholar 

  21. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med 124(2):149–154. doi:10.1007/s00414-009-0398-8

    Article  PubMed  Google Scholar 

  22. Cameriere R, Cingolani M, Giuliodori A, De Luca S, Ferrante L (2012) Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med 126(6):889–899. doi:10.1007/s00414-012-0754-y

    Article  CAS  PubMed  Google Scholar 

  23. Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M, Cattaneo C, Ferrante L (2012) Reliability of Schmeling’s stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med 126(6):923–932. doi:10.1007/s00414-012-0769-4

    Article  CAS  PubMed  Google Scholar 

  24. Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digital ultrasonic system to determine the age threshold of 21 years. Int J Legal Med 123(3):241–245. doi:10.1007/s00414-009-0335-x

    Article  PubMed  Google Scholar 

  25. Cameriere R, Ferrante L, Mirtella D, Cingolani M (2006) Carpals and epiphyses of radius and ulna as age indicators. Int J Legal Med 120(3):143–146. doi:10.1007/s00414-005-0040-3

    Article  PubMed  Google Scholar 

  26. Milenkovic P, Djuric M, Milovanovic P, Djukic K, Zivkovic V, Nikolic S (2014) The role of CT analyses of the sternal end of the clavicle and the first costal cartilage in age estimation. Int J Legal Med 128(5):825–839. doi:10.1007/s00414-014-1026-9

    Article  PubMed  Google Scholar 

  27. Hackman L, Black S (2013) The reliability of the Greulich and Pyle atlas when applied to a modern Scottish population. J Forensic Sci 58(1):114–119. doi:10.1111/j.1556-4029.2012.02294.x

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127(4):831–838. doi:10.1007/s00414-013-0871-2

    Article  CAS  PubMed  Google Scholar 

  29. Wittschieber D, Vieth V, Wierer T, Pfeiffer H, Schmeling A (2013) Cameriere’s approach modified for pelvic radiographs: a novel method to assess apophyseal iliac crest ossification for the purpose of forensic age diagnostics. Int J Legal Med 127(4):825–829. doi:10.1007/s00414-013-0832-9

    Article  PubMed  Google Scholar 

  30. Saint-Martin P, Rerolle C, Dedouit F, Rousseau H, Rouge D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year threshold. Int J Legal Med 128(4):675–683. doi:10.1007/s00414-014-0987-z

    Article  PubMed  Google Scholar 

  31. Santiago RC, de Miranda Costa LF, Vitral RWF, Fraga MR, Bolognese AM, Maia LC (2012) Cervical vertebral maturation as a biologic indicator of skeletal maturity. Angle Orthod 82(6):1123–1131. doi:10.2319/103111-673.1

    Article  PubMed  Google Scholar 

  32. Greulich WW, Pyle, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, Stanford.

  33. Tanner J, Whitehouse R, Healy M (1962) A new system for estimating the maturity of the hand and wrist, with standards derived from 2600 Healthy British Children. Part II. The scoring system. International Children’s Centre, Paris

    Google Scholar 

  34. Fishman LS (1982) Radiographic evaluation of skeletal maturation. A clinically oriented method based on hand-wrist films. Angle Orthod 52(2):88–112. doi:10.1043/0003-3219(1982)052<0088:REOSM>2.0.CO;2

    CAS  PubMed  Google Scholar 

  35. Flores-Mir C, Nebbe B, Major PW (2004) Use of skeletal maturation based on hand-wrist radiographic analysis as a predictor of facial growth: a systematic review. Angle Orthod 74(1):118–124. doi:10.1043/0003-3219(2004)074<0118:UOSMBO>2.0.CO;2

    PubMed  Google Scholar 

  36. Hägg U, Taranger J (1982) Maturation indicators and the pubertal growth spurt. Am J Orthod 82(4):299–309. doi:10.1016/0002-9416(82)90464-X

    Article  PubMed  Google Scholar 

  37. Lamparski D (1972) Skeletal age assessment using cervical vertebrae. University of Pittsburgh, Pittsburgh

    Google Scholar 

  38. Hassel B, Farman AG (1995) Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop 107(1):58–66

    Article  CAS  Google Scholar 

  39. Baccetti T, Franchi L, McNamara JA (2005) The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod 11(3):119–129

    Article  Google Scholar 

  40. Mito T, Sato K, Mitani H (2002) Cervical vertebral bone age in girls. Am J Orthod Dentofac Orthop 122(4):380–385

    Article  Google Scholar 

  41. San Roman P, Palma JC, Oteo MD, Nevado E (2002) Skeletal maturation determined by cervical vertebrae development. Eur J Orthod 24(3):303–311

    Article  PubMed  Google Scholar 

  42. Caldas Mde P, Ambrosano GM, Haiter Neto F (2007) New formula to objectively evaluate skeletal maturation using lateral cephalometric radiographs. Braz Oral Res 21(4):330–335

    Article  PubMed  Google Scholar 

  43. World Medical A (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194. doi:10.1001/jama.2013.281053

    Article  Google Scholar 

  44. Rasband WS (1997–2013) Image J. U S National Institutes of Health, Bethesda

  45. Aykroyd RG, Lucy D, Pollard AM, Solheim T (1997) Technical note: regression analysis in adult age estimation. Am J Phys Anthropol 104(2):259–265. doi:10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  46. Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81(11):1565–1578. doi:10.1080/00949655.2010.496117

    Article  Google Scholar 

  47. Efron B (1982) The jackknife, the bootstrap, and other resampling plans. CBMS-NSF Regional conference series in applied mathematics, vol 38. SIAM, Philadelphia

    Book  Google Scholar 

  48. R Core Team Development (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org

    Google Scholar 

  49. Galić I, Nakaš E, Prohić S, Selimović E, Obradović B, Petrovečki M (2010) Dental age estimation among children aged 5–14 years using the Demirjian method in Bosnia-Herzegovina. Acta Stomatol Croat 44(1):17–25

    Google Scholar 

  50. Thevissen PW, Fieuws S, Willems G (2013) Third molar development: evaluation of nine tooth development registration techniques for age estimations. J Forensic Sci. doi:10.1111/1556-4029.12063

    Google Scholar 

  51. Cameriere R, Ferrante L, Cingolani M (2006) Age estimation in children by measurement of open apices in teeth. Int J Legal Med 120(1):49–52. doi:10.1007/s00414-005-0047-9

    Article  PubMed  Google Scholar 

  52. Cameriere R, De Luca S, Biagi R, Cingolani M, Farronato G, Ferrante L (2012) Accuracy of three age estimation methods in children by measurements of developing teeth and carpals and epiphyses of the ulna and radius. J Forensic Sci 57(5):1263–1270. doi:10.1111/j.1556-4029.2012.02120.x

    Article  PubMed  Google Scholar 

  53. Lucy D, Aykroyd RG, Pollard AM (2002) Nonparametric calibration for age estimation. J R Stat Soc: Ser C: Appl Stat 51(2):183–196. doi:10.1111/1467-9876.00262

    Article  Google Scholar 

  54. Seedat AK, Forsberg CD (2005) An evaluation of the third cervical vertebra (C3) as a growth indicator in Black subjects. SADJ 60(4):156, 158–160

  55. Liversidge HM (2008) Dental age revisited. In: Irish JD, Nelson GC (eds) Technique and application in dental anthropology. Cambridge University Press, Cambridge, pp 234–252

    Chapter  Google Scholar 

  56. Focardi M, Pinchi V, De Luca F, Norelli GA (2014) Age estimation for forensic purposes in Italy: ethical issues. Int J Legal Med 128(3):515–522. doi:10.1007/s00414-014-0986-0

    PubMed  Google Scholar 

  57. Aynsley-Green A, Cole TJ, Crawley H, Lessof N, Boag LR, Wallace RM (2012) Medical, statistical, ethical and human rights considerations in the assessment of age in children and young people subject to immigration control. Br Med Bull 102:17–42. doi:10.1093/bmb/lds014

    Article  CAS  PubMed  Google Scholar 

  58. Schmeling A, Garamendi PM, Prieto JL, Landa MI (2011) Forensic age estimation in unaccompanied minors and young living adults. In: Vieira DN (ed) Forensic medicine—from old problems to new challenges. InTech Europe, Rijeka, pp 77–120

    Google Scholar 

  59. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rosing FW, Rotzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460. doi:10.1007/s00414-008-0254-2

    Article  CAS  PubMed  Google Scholar 

  60. Cameriere R (2014) AgEstimation. University of Macerata. http://agestimation.unimc.it/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Galić.

Appendix

Appendix

The first step in Bayesian analysis is to choose a probability model for the observed data.

We choose the probability model for the observed data of the form p(x i |t i θ), i = 1, … n; with the unknown vector of parameters θ. Vector θ is supported by parameter space Θ ⊆ ℝm and considers a vector of m random variables, the joint prior distribution of which is h(θ).

  1. 1.

    We assume that observations are independent but not necessarily identically distributed with the probability model for observed data of the form p(x i |t i θ), i = 1, … n; with unknown vector of parameters θ.

  2. 2.

    Given age u and θ, the new observation y is independent of the observed data and follows the same probability model.

With these assumptions, given observations t and x, the posterior distribution for θ may be written as follows:

$$ h\left(\boldsymbol{\theta}\ \Big|\ \boldsymbol{t},\ \boldsymbol{x}\right)=\frac{h\left(\boldsymbol{\theta} \right)p\left(\boldsymbol{x}\ \Big|\ \boldsymbol{t},\ \boldsymbol{\theta} \right)}{{\displaystyle {\int}_{\Theta}}h\left(\boldsymbol{\theta} \right)p\left(\boldsymbol{x}\ \Big|\ \boldsymbol{t},\ \boldsymbol{\theta} \right)d\boldsymbol{\theta}}=\frac{h\left(\boldsymbol{\theta} \right){\displaystyle {\prod}_{i=1}^n}p\left({\boldsymbol{x}}_{\boldsymbol{i}}\ \Big|\ {t}_i,\ \boldsymbol{\theta} \right)}{{\displaystyle {\int}_{\Theta}}h\left(\boldsymbol{\theta} \right){\displaystyle {\prod}_{i=1}^n}p\left({\boldsymbol{x}}_{\boldsymbol{i}}\ \Big|\ {t}_i,\ \boldsymbol{\theta} \right)d\boldsymbol{\theta}}. $$

Lastly, the calibrating distribution may be written as follows:

$$ f\left(u\ \Big|\ y,\ \boldsymbol{t},\boldsymbol{x}\right)=\frac{p(u)\phi \left(y\ \Big|\ u,\ \boldsymbol{t},\boldsymbol{x}\right)}{{\displaystyle {\int}_0^{+\infty }}p(u)\phi \left(y\ \Big|\ u,\ \boldsymbol{t},\boldsymbol{x}\right)du} $$
(1)

where ϕ(y | ut, x) is the predictive distribution:

$$ \phi \left(y\ \Big|\ u,\ \boldsymbol{t},\boldsymbol{x}\right)={\displaystyle \underset{\Theta}{\int }p\left(y\ \Big|\ u,\ \boldsymbol{\theta} \right)\ h\left(\boldsymbol{\theta}\ \Big|\ \boldsymbol{t},\ \boldsymbol{x}\right)d\boldsymbol{\theta}} $$
(2)

and p(u) is the prior distribution of age.

In our Bayesian calibration approach, the probability model for a typical observation, (x | tθ), is assumed to be asymmetric Laplace distribution (ALD) (μ, σ, τ), with location parameter μ = μ(t) and scale parameter σ > 0 and a skewness parameter 0 < τ < 1

$$ p\left(x\ \Big|\ t,\ \boldsymbol{\theta}, \tau \right)=\frac{\tau \left(1-\tau \right)}{\sigma } \exp \left\{-{\rho}_{\tau}\left(\frac{x-\mu (t)}{\sigma}\right)\right\} $$

where

$$ {\rho}_{\tau }(z) = \frac{\left|z\right|+\left(2\tau -1\right)z}{2} $$

and θ = (α, β, σ) is the vector of parameters.

A restricted cubic splines were used to model μ = μ(t) allowing nonlinearity in the relation between age and C4 [18].

For each value of parameter τ, we obtain the distribution of the τth quantile of the posterior distribution of age u, conditioned to the value of age predictor y, the vectors of ages t = (t 1, …, t n ) and predictor values x = (x 1, …, x n ). The calibrating distribution is obtained for τ = 0.5, when the probability model for the observed data, p(x | tθ), reduces to a Laplace distribution:

$$ p\left(x\ \Big|\ t,\ \boldsymbol{\theta} \right)=\frac{1}{4\sigma } \exp \left\{-\frac{\left|x-\mu (t)\right|}{2\sigma}\right\}. $$

Thus, the calibrating distribution is the distribution of the median of the conditioned posterior distribution for age u. Since no prior information is available on the model parameters, we chose an uninformative prior distribution h(θ) = 1/σ for the model parameters.

Although conjugate prior distribution is not available for ALD, we approximate the predictive distribution, ϕ(y | ut, x), by the sample average:

$$ \frac{1}{M}{\displaystyle \sum_{m=1}^M}p\left(y\ \Big|\ u\ {\boldsymbol{\theta}}_m\right) $$

where θ m , m = 1,…, M = 500 are posterior draws from h(θ | tx) according to the Markov Chain Monte Carlo (MCMC) method described in [46] and implemented in R [48].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameriere, R., Giuliodori, A., Zampi, M. et al. Age estimation in children and young adolescents for forensic purposes using fourth cervical vertebra (C4). Int J Legal Med 129, 347–355 (2015). https://doi.org/10.1007/s00414-014-1112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1112-z

Keywords

Navigation