Skip to main content

Advertisement

Log in

Spectrometric evaluation of post-mortem optical skin changes

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

As to their optical properties, the components of human skin can be divided into two different categories: the light-scattering components shown as peaks and those absorbing light appearing as dips in the reflectance spectrum. As the post-mortem interval progresses, the concentration of scatterers and absorbers and thus the reflectance spectra change due to post-mortem tissue breakdown and degradation. Based on a total number of 532 reflectance spectrometric measurements in 195 deceased, a characteristic change in the reflectance spectra could be documented in the post-mortem course. Subsequently, an algorithm to calculate the post-mortem interval was developed by analysing the reflectance spectrometric extrema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belenkaia L, Bohnert M, Liehr AW (2006) Electronic laboratory notebook assisting reflectance spectrometry in legal medicine. arXiv http://arxiv.org/abs/cs.DB/0612123

  2. Blazek V (1980) Deutung ausgewählter, forensisch relevanter Veränderungen der wellenlängenabhängigen Hautreflexion. Biomed Tech 25:417–419

    Article  Google Scholar 

  3. Bohnert M, Weinmann W, Pollak S (1999) Spectrophotometric evaluation of postmortem lividity. Forensic Sci Int 99:149–158

    Article  CAS  PubMed  Google Scholar 

  4. Bohnert M, Schulz K, Belenkaia L, Liehr AW (2008) Reoxygenation of hemoglobin in livores after postmortem exposure to a cold environment. Int J Legal Med 122:91–96

    Article  PubMed  Google Scholar 

  5. Green MA, Wright JC (1985) Postmortem interval estimation from body temperature data only. Forensic Sci Int 28:35–46

    Article  CAS  PubMed  Google Scholar 

  6. Green MA, Wright JC (1985) The theoretical aspects of the time dependent Z equation as a means of postmortem interval estimation using body temperature data only. Forensic Sci Int 28:53–62

    Article  CAS  PubMed  Google Scholar 

  7. Henssge C (1982) Methoden zur Bestimmung der Todeszeit—Leichenabkühlung und Todeszeitbestimmung. Humboldt-Universität

  8. Henssge C (1992) Rectal temperature time of death nomogram: dependence of corrective factors on the body weight under stronger thermic insulation conditions. Forensic Sci Int 54:51–66

    Article  CAS  PubMed  Google Scholar 

  9. Henssge C, Althaus L, Bolt J et al (2000) Experiences with a compound method for estimating the time since death. I. Rectal temperature nomogram for time since death. Int J Legal Med 113:303–309

    Article  CAS  PubMed  Google Scholar 

  10. Henssge C, Althaus L, Bolt J et al (2000) Experiences with a compound method for estimating the time since death. II. Integration of non-temperature-based methods. Int J Legal Med 113:320–321

    Article  CAS  PubMed  Google Scholar 

  11. Henssge C, Madea B (2004) Leichenerscheinungen und Todeszeitbestimmung. In: Brinkmann B, Madea B (eds) Handbuch Gerichtliche Medizin. Springer, Berlin, pp 79–226

    Google Scholar 

  12. Henssge C, Madea B (2004) Estimation of the time since death in the early post-mortem period. Forensic Sci Int 144:167–175

    Article  CAS  PubMed  Google Scholar 

  13. Henssge C, Madea B (2004) Leichenerscheinungen und Todeszeitbestimmung. In: Handbuch gerichtliche Medizin, Springer, Berlin Heidelberg

  14. Höppner F (2002) Time series abstraction methods—a survey. In: 32. Jahrestagung der Gesellschaft für Informatik e.v

  15. Kaatsch HJ, Stadler M, Nietert M (1993) Photometric measurement of color changes in livor mortis as a function of pressure and time. Int J Legal Med 106:91–97

    Article  CAS  PubMed  Google Scholar 

  16. Kaatsch HJ, Schmidtke W, Nietsch W (1994) Photometric measurement of pressure-induced blanching of livor mortis as an aid to estimating time of death. Int J Legal Med 106:91–97

    Article  Google Scholar 

  17. Koppes-Koenen K (1991) Untersuchungen zum parameterfreien Verfahren der Todeszeitbestimmung aus Körpertemperaturen von Green und Wright. Universität Köln

  18. Lins G (1973) Der Farbort der Totenflecken im Spektralfarbenzug. Beitr Gerichtl Med 31:203–212

    CAS  PubMed  Google Scholar 

  19. Lins G, Kutschera J (1974) Die farbmetrische Bewertung der Grünfäule der Leichenhaut im Rahmen der programmierten Farbwertintegration. Z Rechtsmed 75:201–212

    Article  CAS  PubMed  Google Scholar 

  20. Mall G, Hubig M, Beier G, Eisenmenger W (1998) Energy loss due to radiation in postmortem cooling. Part A: quantitative estimation of radiation using the Stefan–Boltzmann law. Int J Legal Med 111:299–304

    Article  CAS  PubMed  Google Scholar 

  21. Mall G, Hubig M, Beier G, Büttner A, Eisenmenger W (1999) Energy loss due to radiation in postmortem cooling. Part B: Energy balance with respect to radiation. Int J Legal Med 112:233–240

    Article  CAS  PubMed  Google Scholar 

  22. Mall G, Eckl M, Sinicina I, Peschel O, Hubig M (2004) Temperature-based death time estimation with only partially known environmental conditions. Int J Legal Med 119:185–194

    Article  PubMed  Google Scholar 

  23. Marshall T, Hoare F (1962) Estimating the time of death. The rectal cooling after death and its mathematical expression. Forensic Sci 7:56–81

    Google Scholar 

  24. Riede M, Schueppel R, Sylvester-Hvid KO, Kühne M, Röttger MC, Zimmermann K, Liehr AW (2010) On the communication of scientific results: the full-metadata format. Comput Phys Commun 181:651–662

    Article  CAS  Google Scholar 

  25. Schmidt O (1937) Die Bildung von Sulfhämoglobin in der Leiche. Dtsch Z ges Gerichtl Med 27:372–389

    Google Scholar 

  26. Schuller E, Pankratz H, Liebhardt E (1987) Farbortmessungen an Totenflecken. Beitr Gerichtl Med 45:169–173

    CAS  PubMed  Google Scholar 

  27. Schuller E, Pankratz H, Wohlrab S, Liebhardt E (1988) Die Bestimmung des Farbortes der Totenflecken in Beziehung zur Wegdrückbarkeit. In: Bauer G (ed) Gerichtsmedizin. Festschrift für W. Holczabek, Franz Deuticke, Wien, pp 295–302

    Google Scholar 

  28. Sylvester-Hvid KO, Tromholt T, Jorgensen M, Krebs FC, Niggemann M, Zimmermann K, Liehr AW (2011) Non-destructive lateral mapping of the thickness of the photoactive layer in polymer based solar cells. Prog Photovol: Res Appl. doi:10.1002/pip.1190

    Google Scholar 

  29. Thornton JI (1997) Visual color comparison in forensic science. Forensic Sci Rev 9:37–56

    Google Scholar 

  30. Vanezis P (1991) Assessing hypostasis by colorimetry. Forensic Sci Int 52:1–3

    Article  CAS  PubMed  Google Scholar 

  31. Vanezis P, Trujillo O (1996) Evaluation of hypostasis using a colorimeter measuring system and its application to assessment of the post-mortem interval (time of death). Forensic Sci Int 78:19–28

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann K, Quack L, Liehr AW (2007) Pyphant—a python framework for modelling reusable information processing tasks. Python Pap 2:28–43

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (German Research Council), file numbers BO 1923/2-2 and LI 1799/1-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Sterzik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterzik, V., Belenkaia, L., Liehr, A.W. et al. Spectrometric evaluation of post-mortem optical skin changes. Int J Legal Med 128, 361–367 (2014). https://doi.org/10.1007/s00414-013-0855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-013-0855-2

Keywords

Navigation