Skip to main content
Log in

Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The nature of mitochondrial DNA heteroplasmy is still unclear. It could either be caused by two mitochondrial DNA (mtDNA) haplotypes coexisting within a single cell or by an admixture of homoplasmic cells, each of which contains only one type of mtDNA molecule. To address this question, single lymphocytes were separated by flow cytometry assisted cell sorting and analyzed by cycle sequencing or minisequencing. To attain the required PCR sensitivity, the reactions were carried out on the surface of chemically structured glass slides in a reaction volume of 1–2 μl. In this study, blood samples from two healthy donors showing mitochondrial point heteroplasmy in direct sequencing (195Y and 234R, respectively) were analyzed. Nearly 96% of single lymphocytes tested were found to be in a homoplasmic state, but heteroplasmic cells were also detected. These results suggest that mitochondrial point heteroplasmy in blood may well be mainly due to the mixture of homoplasmic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso A, Salas A, Albarran C et al (2002) Results of the 1999–2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor. Forensic Sci Int 125:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Melton T (2004) Mitochondrial DNA heteroplasmy. Forensic Sci Rev 16:1–20

    Google Scholar 

  3. Bendall KE, Sykes BC (1995) Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am J Hum Genet 57:248–256

    PubMed  CAS  Google Scholar 

  4. Bendall KE, Macaulay VA, Baker JR, Sykes BC (1996) Heteroplasmic point mutations in the human mtDNA control region. Am J Hum Genet 59:1276–1287

    PubMed  CAS  Google Scholar 

  5. Marchington DR, Hartshorne GM, Barlow D, Poulton J (1997) Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck. Am J Hum Genet 60:408–416

    PubMed  CAS  Google Scholar 

  6. Chinnery PF, Thorburn DR, Samuels DC et al (2000) The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both. Trends Genet 16:500–505

    Article  PubMed  CAS  Google Scholar 

  7. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  PubMed  CAS  Google Scholar 

  8. Hühne J, Pfeiffer H, Waterkamp K, Brinkmann B (1999) Mitochondrial DNA in human hair shafts—existence of intra-individual differences. Int J Legal Med 112:172–175

    Article  PubMed  Google Scholar 

  9. Monnat RJ, Reay D (1986) Nucleotide sequence identity of mitochondrial DNA from different human tissues. Gene 43:205–211

    Article  PubMed  CAS  Google Scholar 

  10. Wilson MR, Polanskey D, Butler J, DiZinno JA, Replogle J, Budowle B (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. Biotechniques 18:662–669

    PubMed  CAS  Google Scholar 

  11. Calloway CD, Reynolds RL, Herrin GL Jr, Anderson WW (2000) The frequency of heteroplasmy in the HVII region differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397

    Article  PubMed  CAS  Google Scholar 

  12. Gocke CD, Benko FA, Roga (1998) Transmission of mitochondrial DNA heteroplasmy in normal pedigrees. Hum Genet 102:182–186

    Article  PubMed  CAS  Google Scholar 

  13. Howell N, Smejkal CB (2000) Persistent heteroplasmy of a mutation in the human mtDNA control region: hypermutation as an apparent consequence of simple-repeat expansion/contraction. Am J Hum Genet 66:1589–1598

    Article  PubMed  CAS  Google Scholar 

  14. Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, Prenger VL (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 67:432–443

    Article  PubMed  CAS  Google Scholar 

  15. Brandstätter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artefacts—a matter of the amplification strategy. Int J Legal Med 117:180–184

    Article  PubMed  Google Scholar 

  16. Lutz-Bonengel S, Sänger T, Heinrich M, Thomas Zacher T, Schmidt U (2007) Low volume amplification and subsequent sequencing of mitochondrial DNA on a chemically structured chip. Int J Legal Med 121:68–73

    Article  PubMed  Google Scholar 

  17. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt U, Lutz-Bonengel S, Weisser HJ et al (2006) Low-volume amplification on chemically structured chips using the PowerPlex16 DNA amplification kit. Int J Legal Med 120:42–48

    Article  PubMed  Google Scholar 

  19. Lutz S, Weisser HJ, Heizmann J, Pollak S (1998) Location and frequency of polymorphic positions in the human mtDNA control region of individuals from Germany. Int J Legal Med 111:67–77 [Erratum in Int J Legal Med (1998) 111:286 and Int J Legal Med (1999) 112:145–150]

    Article  PubMed  CAS  Google Scholar 

  20. Loken MR, Sweet RG, Herzenberg LA (1976) Cell discrimination by multiangle light scattering. J Histochem Cytochem 24:284–291

    PubMed  CAS  Google Scholar 

  21. Zilmer NA, Godavarti M, Rodriguez JJ, Yopp TA, Lambert GM, Galbraith DW (1995) Flow cytometric analysis using digital signal processing. Cytometry 20:102–117

    Article  PubMed  CAS  Google Scholar 

  22. Lutz S, Weisser HJ, Heizmann J, Pollak S (2000) Mitochondrial heteroplasmy among maternally related individuals. Int J Legal Med 113:155–161

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi Y, Sharpe H, Brown N (1994) Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy. Am J Hum Genet 55:206–209

    PubMed  CAS  Google Scholar 

  24. Salas A, Lareu MV, Carracedo A (2001) Heteroplasmy in mtDNA and the weight of evidence in forensic mtDNA analysis: a case report. Int J Legal Med 114:186–190

    Article  PubMed  CAS  Google Scholar 

  25. Parson W, Brandstätter A, Alonso A et al (2004) The EDNAP Mitochondrial DNA Population Database (EMPOP) collaborative exercises: organisation, results and perspectives. Forensic Sci Int 139:215–226

    Article  PubMed  CAS  Google Scholar 

  26. Tully G, Barritt SM, Bender K et al (2004) Results of a collaborative study of the EDNAP group regarding mitochondrial DNA heteroplasmy and segregation in hair shafts. Forensic Sci Int 140:1–11

    Article  PubMed  CAS  Google Scholar 

  27. Cavelier L, Johannisson A, Gyllensten U (2000) Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res 259:79–85

    Article  PubMed  CAS  Google Scholar 

  28. Lomax B, Tang S, Separovic E, Phillips D, Hillard E, Thomson T, Kalousek DK (2000) Comparative genomic hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet 66:1516–1521

    Article  PubMed  CAS  Google Scholar 

  29. Shin MG, Kajigaya S, Tarnowka M, McCoy JP Jr, Levin BC, Young NS (2004) Mitochondrial DNA sequence heterogeneity in circulating normal human CD34 cells and granulocytes. Blood 103:4466–4477

    Article  PubMed  CAS  Google Scholar 

  30. Yao YG, Ogasawara Y, Kajigaya S et al (2007) Mitochondrial DNA sequence variation in single cells from leukemia patients. Blood 109:756–762

    Article  PubMed  CAS  Google Scholar 

  31. Coller HA, Bodyak ND, Khrapko K (2002) Frequent intracellular clonal expansions of somatic mtDNA mutations: significance and mechanisms. Ann N Y Acad Sci 959:434–447

    Article  PubMed  CAS  Google Scholar 

  32. Gigarel N, Ray PF, Burlet P et al (2005) Single cell quantification of the 8993T. >. G NARP mitochondrial DNA mutation by fluorescent PCR. Mol Genet Metab 84:289–292

    Article  PubMed  CAS  Google Scholar 

  33. Malik S, Sudoyo H, Pramoonjago P, Sukarna T, Darwis D, Marzuki S (2002) Evidence for the de novo regeneration of the pattern of the length heteroplasmy associated with the T16189C variant in the control (D-loop) region of mitochondrial DNA. J Hum Genet 47:122–130

    Article  PubMed  CAS  Google Scholar 

  34. He L, Chinnery PF, Durham SE et al (2002) Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 30:e68

    Article  PubMed  Google Scholar 

  35. Taylor RW, Taylor GA, Durham SE, Turnbull DM (2001) The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations. Nucleic Acids Res 29:e74

    Article  PubMed  CAS  Google Scholar 

  36. Elson JL, Andrews RM, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (2001) Analysis of European mtDNAs for recombination. Am J Hum Genet 68:145–153

    Article  PubMed  CAS  Google Scholar 

  37. Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14:146–151

    Article  PubMed  CAS  Google Scholar 

  38. Bodyak ND, Nekhaeva E, Wei JY, Khrapko K (2001) Quantification and sequencing of somatic deleted mtDNA in single cells: evidence for partially duplicated mtDNA in aged human tissues. Hum Mol Genet 10:17–24

    Article  PubMed  CAS  Google Scholar 

  39. Khrapko K, Bodyak N, Thilly WG et al (1999) Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res 27:2434–2441

    PubMed  CAS  Google Scholar 

  40. Nekhaeva E, Bodyak ND, Kraytsberg Y et al (2002) Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci U S A 99:5521–5526

    Article  PubMed  CAS  Google Scholar 

  41. Mawrin C, Kirches E, Dietzmann K (2003) Single-cell analysis of mtDNA in amyotrophic lateral sclerosis: towards the characterization of individual neurons in neurodegenerative disorders. Pathol Res Pract 199:415–418

    Article  PubMed  CAS  Google Scholar 

  42. Mawrin C, Kirches E, Krause G et al (2004) Single-cell analysis of mtDNA deletion levels in sporadic amyotrophic lateral sclerosis. Neuroreport 15:939–943

    Article  PubMed  CAS  Google Scholar 

  43. Heinzel K, Benz C, Martins VC, Haidl I, Bleul CC (2007) Bone marrow-derived hemopoietic precursors commit to the T cell lineage only after arrival in the thymic microenvironment. J Immunol 178:858–868

    PubMed  CAS  Google Scholar 

  44. Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG (2001) High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 28:147–150

    Article  PubMed  CAS  Google Scholar 

  45. Marchington DR, Macaulay V, Hartshorne GM, Barlow D, Poulton J (1998) Evidence from human oocytes for a genetic bottleneck in an mtDNA disease. Am J Hum Genet 63:769–775

    Article  PubMed  CAS  Google Scholar 

  46. Jansen RP, de Boer K (1998) The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 145:81–88

    Article  PubMed  CAS  Google Scholar 

  47. Krakauer DC, Mira A (1999) Mitochondria and germ-cell death. Nature 40:125–126

    Article  Google Scholar 

  48. Cummins J (1998) Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172–182

    Article  PubMed  CAS  Google Scholar 

  49. Cummins JM (2001) Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum Reprod Update 7:217–228

    Article  PubMed  CAS  Google Scholar 

  50. Cao L, Shitara H, Horii T et al (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39:386–390

    Article  PubMed  CAS  Google Scholar 

  51. Lehtinen SK, Hance N, El Meziane A et al (2000) Genotypic stability, segregation and selection in heteroplasmic human cell lines containing np 3243 mutant mtDNA. Genetics 154:363–380

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the German Research Foundation (LU 1444/1-1). The authors are very grateful to Klaus Geiger, Karin Nispel, and Andreas Würch for cell sorting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Lutz-Bonengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz-Bonengel, S., Sänger, T., Parson, W. et al. Single lymphocytes from two healthy individuals with mitochondrial point heteroplasmy are mainly homoplasmic. Int J Legal Med 122, 189–197 (2008). https://doi.org/10.1007/s00414-007-0190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-007-0190-6

Keywords

Navigation