Skip to main content
Log in

Low volume amplification and sequencing of mitochondrial DNA on a chemically structured chip

  • Technical Note
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Low volume (LV) amplification (1 μL) of nuclear DNA (nucDNA) on a chemically structured chip is an appropriate and highly sensitive method to simultaneously amplify amelogenin and 15 forensically relevant short tandem repeats (STR). In this study, a combined method using on-chip LV amplification of mitochondrial DNA (mtDNA) and subsequent on-chip LV cycle sequencing was established to obtain a method, which is sensitive and robust enough to allow reliable analysis of DNA amounts representing the single cell level. All the necessary steps of the procedure—except for the purification of the sequencing products—were accomplished within the same final 2-μL reaction volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464

    Article  PubMed  CAS  Google Scholar 

  2. Andréasson H, Gyllensten U, Allen M (2002) Real-time DNA quantification of nuclear and mitochondrial DNA in forensic analysis. Biotechniques 33:402–411

    PubMed  Google Scholar 

  3. Asamura H, Sakai H, Kobayashi K, Ota M, Fukushima H (2006) MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis. Int J Legal Med 120:174–181

    Article  PubMed  CAS  Google Scholar 

  4. Berger B, Lindinger A, Niederstätter H, Grubwieser P, Parson W (2005) Y-STR typing of an Austrian population sample using a 17-loci multiplex PCR assay. Int J Legal Med 119:241–246

    Article  PubMed  Google Scholar 

  5. Bogenhagen D, Clayton DA (1974) The number of mitochondrial deoxyribonucleic acid molecules in mouse L and human HeLa cells. J Biol Chem 249:7991–7995

    PubMed  CAS  Google Scholar 

  6. Brandstätter A, Parsons TJ, Parson W (2003) Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups. Int J Legal Med 117:291–298

    Article  PubMed  Google Scholar 

  7. Budowle B, Allard MW, Wilson MR, Chakraborty R (2003) Forensics and mitochondrial DNA: applications, debates, and foundations. Annu Rev Genomics Hum Genet 4:119–141

    Article  PubMed  CAS  Google Scholar 

  8. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064

    PubMed  CAS  Google Scholar 

  9. Chong MD, Calloway CD, Klein SB, Orrego C, Buoncristiani MR (2005) Optimization of a duplex amplification and sequencing strategy for the HVI/HVII regions of human mitochondrial DNA for forensic casework. Forensic Sci Int 154:137–148

    Article  PubMed  CAS  Google Scholar 

  10. Divne AM, Allen MA (2005) DNA microarray system for forensic SNP analysis. Forensic Sci Int 154:111–121

    Article  PubMed  CAS  Google Scholar 

  11. Gaines ML, Wojtkiewicz PW, Valentine JA, Brown CL (2002) Reduced volume PCR amplification reactions using the AmpFlSTR Profiler Plus kit. J Forensic Sci 47:1224–1237

    PubMed  CAS  Google Scholar 

  12. Grignani P, Peloso G, Achilli A et al (2006) Subtyping mtDNA haplogroup H by SNaPshot minisequencing and its application in forensic individual identification. Int J Legal Med 120:151–156

    Article  PubMed  CAS  Google Scholar 

  13. Grubwieser P, Zimmermann B, Niederstätter H, Pavlic M, Steinlechner M, Parson W (2006) Evaluation of an extended set of 15 candidate STR loci for paternity and kinship analysis in an Austrian population sample. Int J Legal Med, DOI 10.1007/s00414-006-0079-9

  14. Kloosterman AD, Kersbergen P (2003) Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci. J Soc Biol 197:351–359

    PubMed  CAS  Google Scholar 

  15. Krenke BE, Tereba A, Anderson SJ et al (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47:773–785

    PubMed  CAS  Google Scholar 

  16. Kricka LJ, Wilding P (2003) Microchip PCR. Anal Bioanal Chem 377:820–825

    Article  PubMed  CAS  Google Scholar 

  17. Leclair B, Sgueglia JB, Wojtowicz PC, Juston AC, Fregeau CJ, Fourney RM (2003) STR DNA typing: increased sensitivity and efficient sample consumption using reduced PCR reaction volumes. J Forensic Sci 48:1001–1013

    PubMed  CAS  Google Scholar 

  18. Lygo JE, Johnson PE, Holdaway DJ et al (1994) The validation of short tandem repeat (STR) loci for use in forensic casework. Int J Legal Med 107:77–89

    Article  PubMed  CAS  Google Scholar 

  19. Parson W, Niederstätter H, Brandstätter A, Berger B (2003) Improved specificity of Y-STR typing in DNA mixture samples. Int J Legal Med 117:109–114

    PubMed  Google Scholar 

  20. Pfeiffer H, Hühne J, Ortmann C, Waterkamp K, Brinkmann B (1999) Mitochondrial DNA typing from human axillary, pubic and head hair shafts—success rates and sequence comparisons. Int J Legal Med 112:287–290

    Article  PubMed  CAS  Google Scholar 

  21. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 13:507–513

    Article  Google Scholar 

  22. Schmidt U, Lutz-Bonengel S, Weisser H-J et al (2006) Low volume amplification on chemically structured chips using the PowerPlex16 DNA amplification kit. Int J Legal Med 120:42–48

    Article  PubMed  Google Scholar 

  23. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  PubMed  CAS  Google Scholar 

  24. Sobrino B, Carracedo A (2005) SNP typing in forensic genetics. Methods Mol Biol 297:107–126

    PubMed  CAS  Google Scholar 

  25. Szibor R, Michael M, Plate I, Krause D (2000) Efficiency of forensic mtDNA analysis. Case examples demonstrating the identification of traces. Forensic Sci Int 113:71–78

    Article  PubMed  CAS  Google Scholar 

  26. Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Krause D (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117:67–74

    PubMed  CAS  Google Scholar 

  27. Szibor R, Hering S, Kuhlisch E, Plate I, Demberger S, Krawczak M, Edelmann J (2005) Haplotyping of STR cluster DXS6801–DXS6809–DXS6789 on Xq21 provides a powerful tool for kinship testing. Int J Legal Med 119:363–369

    Article  PubMed  Google Scholar 

  28. Timken MD, Swango KL, Orrego C, Buoncristiani MR (2005) A duplex real-time qPCR assay for the quantification of human nuclear and mitochondrial DNA in forensic samples: implications for quantifying DNA in degraded samples. J Forensic Sci 50:1044–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Lutz-Bonengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz-Bonengel, S., Sänger, T., Heinrich, M. et al. Low volume amplification and sequencing of mitochondrial DNA on a chemically structured chip. Int J Legal Med 121, 68–73 (2007). https://doi.org/10.1007/s00414-006-0125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-006-0125-7

Keywords

Navigation