Skip to main content

Advertisement

Log in

Specific traces in stun gun deployment

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Stun guns are electric shocking devices that can be deployed as defensive or offensive weapons. The aim of this study was the identification of several types of trace evidence for corroborating deployment and providing clues to the weapon actually used. In a series of some 250 tests, the after-effects of firing a stun gun were studied under the differential influence of factors, such as time duration, distance from target, and bare skin vs clothing as target surface. Examination with scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS) demonstrated the presence of metallic deposits corresponding to the electrodes of the device used. The observed differences in the number of these pellets were related to the length of deployment in seconds and to the distance of the weapon from the target surface. Longer duration of firing was consistently associated with a larger number of metallic deposits. Elemental composition of the latter provided clues to the type of device used and its current status in terms of wear and tear. Further trace evidence we examined included craters on the target surface and their pattern of dissemination on human skin, textiles, and leather. It is concluded that the use of carbon tabs for examination with SEM/EDS offers a practicable method for collecting trace material following stun gun deployment. Important groups of trace evidence do exist, and their collection and examination appear feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altun G, Durmus-Altun G (2003) Confirmation of alleged falanga torture by bone scintigraphy—case report. Int J Legal Med 6:365–366

    Article  Google Scholar 

  2. Anders S, Junge M, Schulz F, Püschel K (2003) Cutaneous current marks due to a stun gun injury. J Forensic Sci 48:640–642

    CAS  PubMed  Google Scholar 

  3. Anders S, Tsokos M, Püschel K (2002) Nachweis der Stromwirkung und des Stromweges im Körper. Rechtsmedizin 1:1–9

    Article  Google Scholar 

  4. Anslinger K, Selbertinger U, Bayer B, Rolf B, Eisenmenger W (2004) Ninhydrin treatment as a screening method for the suitability of swabs taken from contact stains for DNA analysis. Int J Legal Med 2:122–124

    Google Scholar 

  5. Banaschak S, Milbradt H, Humpert M, Roll P, Madea B (2001) Zum Nachweis der Anwendung von Elektroschockgeräten. Arch Kriminol 5/6:149–158

    Google Scholar 

  6. Bohnert M, Pollak S (2003) Heat-mediated changes to the hands and feet mimicking washerwoman’s skin. Int J Legal Med 2:102–105

    Google Scholar 

  7. Brinkmann K, Schäfer H (1982) Der Elektrounfall. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  8. Burdett-Smith P (1997) Stun gun injury. J Accid Emerg Med 14:402–404

    CAS  PubMed  Google Scholar 

  9. Bux R, Andresen D, Rothschild MA (2002) Elektrowaffe advanced taser M26. Rechtsmedizin 12:207–213

    Article  Google Scholar 

  10. Chapman B (1980) Glow discharge processes: sputtering and plasma etching. Wiley, New York

    Google Scholar 

  11. Denk W, Missliwetz J, Wieser I, Tauschitz C (1995) Elektroschockgeräte als Waffe. Arch Kriminol 196:78–86

    CAS  PubMed  Google Scholar 

  12. Fish RM, Geddes LA (2001) Effects of stun guns and tasers. Lancet 358:687–688

    Article  CAS  PubMed  Google Scholar 

  13. Franz G (1990) Kalte Plasmen: Grundlagen, Erscheinungen, Anwendungen. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  14. Frechette A, Rimsza ME (1992) Stun gun injury: a new presentation of the battered child syndrome. Pediatrics 89:898–900

    CAS  PubMed  Google Scholar 

  15. Giebe W, Biewald GA, Nachbar A, Scheler G (1995) Elektroschocker—eine tödliche Waffe?! Rechtsmedizin 5:138–141

    Google Scholar 

  16. Grubwieser P, Pavlic M, Günther M, Rabl W (2004) Airbag contact in traffic accidents: DNA detection to determine the driver identity. Int J Legal Med 1:9–13

    Article  Google Scholar 

  17. Hieda Y, Tsujino Y, Xue Y, Takayama K, Fujihara J, Kimura K, Dekio S (2004) Skin analysis following dermal exposure to kerosene in rats: the effects of postmortem exposure and fire. Int J Legal Med 1:41–46

    Google Scholar 

  18. Ikeda N, Harada A, Suzuki T (1992) Homocidal manual strangulation and multiple stun-gun injuries. Am J Forensic Med Pathol 13(4):320–323

    CAS  PubMed  Google Scholar 

  19. Kornblum RN, Reddy SK (1991) Effects of the taser in fatalities involving police confrontation. J Forensic Sci 36:434–448

    CAS  PubMed  Google Scholar 

  20. Lerner RG, Trigg GL (1991). Encyclopedia of physics. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  21. Miyamoto K (1989) Plasma physics for controlled fusion. MIT Press, Cambridge

    Google Scholar 

  22. O’Brien DJ (1991) Electronic weaponry—a question of safety. Ann Emerg Med 20:583–587

    CAS  PubMed  Google Scholar 

  23. Robinson MN, Brooks CG, Renshaw GD (1990) Electric shock devices and their effects on the human body. Med Sci Law 30:285–300

    CAS  PubMed  Google Scholar 

  24. Roeterdink EM, Dadour IR, Watling RJ (2004) Extraction of gunshot residues from the larvae of the forensically important blowfly calliphora dubia (Macquart) (Diptera: Calliphoridae). Int J Legal Med 2:63–70

    Article  Google Scholar 

  25. Rothschild M, Kahl L, Schneider V (1996) Freiverkäufliche Elektroschockgeräte. Kriminalistik 96:428–430

    Google Scholar 

  26. Roy OZ, Podgorski AS (1989) Tests on a shocking device—the stun gun. Med Biol Eng Comput 27:445–448

    CAS  PubMed  Google Scholar 

  27. Rutscher A, Deutsch H (1984) Plasmatechnik-Grundlagen und Anwendungen. Carl Hanser Verlag, Munich

    Google Scholar 

  28. Stacey WM (1981) Fusion plasma analysis. Wiley, New York

    Google Scholar 

  29. Sótony P, Darok M (1995) Die rasterelektronenmikroskopische elementanalyse in der rechtsmedizin. Rechtsmedizin 5:37–44

    Google Scholar 

  30. Szibor R, Michael M., Plate I et al. (2003) Identification of the minor component of a mixed stain by using mismatch primer-induced restriction sites in amplified mtDNA. Int J Legal Med 3:160–164

    Google Scholar 

  31. Turner Matthew S, Jumbelic MI (2003) Stun gun injuries in the abuse and death of a seven-month-old infant. J Forensic Sci 48:180–182

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Schmiederer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiederer, B., Du Chesne, A., Schmidt, P.F. et al. Specific traces in stun gun deployment. Int J Legal Med 119, 207–212 (2005). https://doi.org/10.1007/s00414-005-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-005-0532-1

Keywords

Navigation