Skip to main content
Log in

Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Species with holocentric chromosomes are often characterized by a rapid karyotype evolution. In contrast to species with monocentric chromosomes where acentric fragments are lost during cell division, breakage of holocentric chromosomes creates fragments with normal centromere activity. To decipher the mechanism that allows holocentric species an accelerated karyotype evolution via chromosome breakage, we analyzed the chromosome complements of irradiated Luzula elegans plants. The resulting chromosomal fragments and rearranged chromosomes revealed holocentromere-typical CENH3 and histone H2AThr120ph signals as well as the same mitotic mobility like unfragmented chromosomes. Newly synthesized telomeres at break points become detectable 3 weeks after irradiation. The presence of active telomerase suggests a telomerase-based mechanism of chromosome healing. A successful transmission of holocentric chromosome fragments across different generations was found for most offspring of irradiated plants. Hence, a combination of holokinetic centromere activity and the fast formation of new telomeres at break points enables holocentric species a rapid karyotype evolution involving chromosome fissions and rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertson DG, Thomson JN (1982) The kinetochores of Caenorhabditis elegans. Chromosoma 86:409–428

  • Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937

  • Bačič T, Jogan N, Koce JD (2007) Luzula sect. Luzula in the south-eastern Alps-karyology and genome size. Taxon 56:129–136

  • Bolkhovskikh Z, Grif V, Matvejeva T, Zakhareva O (1969) Chromosome number of flowering plants. Nauka, Leningrad: Academy of Sciences, U.S.S.R.

  • Bozek M, Leitch AR, Leitch IJ, Záveská Drábková L, Kuta E (2012) Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes. Bot J Linn Soc 170:529–541

  • Britt-Compton B, Capper R, Rowson J, Baird DM (2009) Short telomeres are preferentially elongated by telomerase in human cells. FEBS Lett 583:3076–3080

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Keith S, Von Schoultz B, Suomalainen E (2004) Chromosome evolution in neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas 141:216–236

  • Bureš P, Zedek F, Marková M (2013) Holocentric chromosomes. In: Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity. Vol 2. Springer, Vienna, pp 187–208

  • Chabchoub E, Rodriguez L, Galan E, Mansilla E, Martinez-Fernandez ML, Martinez-Frias, ML, Fryns JP, Vermeesch JR (2007) Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo-telomere formation. J Med Genet 44:250–256

  • Da Silva CRM, González-Elizondo MS, Vanzela ALL (2005) Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot J Linn Soc 149:457–464

  • Da Silva CRM, González-Elizondo MS, Vanzela ALL (2008) Chromosome reduction in Eleocharis maculosa (Cyperaceae). Cytogenet Genome Res 122:175–180

  • Day JP, Marder BA, Morgan WF (1993) Telomeres and their possible role in chromosome stabilization. Environ Mol Mutagen 22:245–249

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák M, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot Lond 82:17–26

  • Fajkus J, Fulnečková J, Hulánová M, Berková K, Říha K, Matyášek R (1998) Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths. Mol Gen Genet 260:470–474

  • Fitzgerald MS, McKnight TD, Shippen DE (1996) Characterization and developmental patterns of telomerase expression in plants. Proc Natl Acad Sci U S A 93:14422–14427

  • Friebe B, Kynast RG, Zhang P, Qi LL, Dhar M, Gill BS (2001) Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Res 9:137–146

  • Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196:227–241

  • Fuchs J, Jovtchev G, Schubert I (2008) The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res 16:891–898

  • Fujiwara H, Nakazato Y, Okazaki S, Ninaki O (2000) Stability and telomere structure of chromosomal fragments in two different mosaic strains of the silkworm, Bombyx mori. Zool Sci 17:743–750

  • Godward MBE (1954) The diffuse centromere or polycentric chromosomes in Spirogyra. Ann Bot Lond 18:143–155

    Google Scholar 

  • Håkansson A (1954) Meiosis and pollen mitosis in X-rayed and untreated spikelets of Eleocharispalustris. Hereditas 40:325–345

  • Håkansson A (1958) Holocentric chromosomes in Eleocharis. Hereditas 44:531–540

  • Harrington LA, Harrington LA (1991) Telomerase primer specificity and chromosome healing. Nature 353:451–454

    Article  CAS  PubMed  Google Scholar 

  • Heckmann S, Schroeder-Reiter E, Kumke K, Ma L, Nagaki K, Murata M, Wanner G, Houben A (2011) Holocentric chromosomes of Luzula elegans are characterized by a longitudinal centromere groove, chromosome bending, and a terminal nucleolus organizer region. Cytogenet Genome Res 134:220–228

  • Heckmann S et al (2013) The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J 73:555–565

  • Heckmann S, Jankowska M, Schubert V, Kumke K, Ma W, Houben A (2014) Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nat Commun 5:4979

  • Heilborn O (1924) Chromosome numbers and dimensions, species-formation and phylogeny in the genus Carex. Hereditas 5:129–216

    Article  Google Scholar 

  • Hemann MT, Strong MA, Hao L-Y, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    Article  CAS  PubMed  Google Scholar 

  • Hipp AL, Rothrock PE, Roalson EH (2009) The evolution of chromosome arrangements in Carex (Cyperaceae). Bot Rev 75:96–109

  • Hoshino T, Okamura K (1994) Cytological studies on meiotic configurations of intraspecific aneuploids of Carex blepharicarpa (Cyperaceae) in Japan. J Plant Res 107:1–8

  • Houben A, Wako T, Furushima-Shimogawara R, Presting G, Künzel G, Schubert I, Fukui K (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J 18:675–679

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo T (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

  • Hughes-Schrader S, Ris H (1941) The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments. J Exp Zool 87:429–456

  • Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327:172–177

  • Kusanagi A (1973) Preferential orientation of interchange multiples in Luzula elegans. Jap J Genet 48:175–183

  • Kuta E, Bohanec B, Dubas E, Vižintin L, Przywara L (2004) Chromosome and nuclear DNA study on Luzula-A genus with holokinetic chromosomes. Genome Natl Res Counc Can 47:246–256

  • LaChance LE, Degrugillier M (1969) Chromosomal fragments transmitted through three generations in Oncopeltus (Hemiptera). Science 166:235–236

  • Li R, Bruneau AH, Qu R (2010) Morphological mutants of St. Augustine grass induced by gamma ray irradiation. Plant Breed 129:412–416

  • Lundblad V (2002) Telomere maintenance without telomerase. Oncogene 21:522–531

  • Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131

  • Malheiros-Garde N, Garde A (1950) Fragmentation as a possible evolutionary process in the genus Luzula DC. Genet Iber 2:257–262

    Google Scholar 

  • Mandrioli M (2002) Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae. Chromosom Res 10:279–286

  • McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25:416, pp 405–416

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:282

    Google Scholar 

  • McClintock B (1942) The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci U S A 28:458, pp 458–463

  • Melek M, Shippen DE (1996) Chromosome healing: spontaneous and programmed de novo telomere formation by telomerase. BioEssays 18:301–308

  • Melters DP, Paliulis LV, Korf IF, Chan SWL (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20:579–593

  • Meltzer PS, Guan XY, Trent JM (1993) Telomere capture stabilizes chromosome breakage. Nat Genet 4:252–255

  • Monti V, Giusti M, Bizzaro D, Manicardi GC, Mandrioli M (2011) Presence of a functional (TTAGG) n telomere-telomerase system in aphids. Chromosome Res 19:625–633

  • Muller H (1938) The remaking of chromosomes. Collect Net 13:181–195

    Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893

  • Nordenskiöld H (1951) Cyto-taxonomical studies in the genus Luzula. Hereditas 37:325–355

    Article  Google Scholar 

  • Nordenskiöld H (1961) Tetrad analysis and course of meiosis in three hybrids of Luzula campestris. Hereditas 47:203–238

    Article  Google Scholar 

  • Nordenskiöld H (1962) Studies of meiosis in Luzula purpurea. Hereditas 48:503–519

    Article  Google Scholar 

  • Nordenskiöld H (1963) A study of meiosis in progeny of x-irradiated Luzula purpurea. Hereditas 49:33–47

  • Nordenskiöld H (1964) The effect of x-irradiation on diploid and polyploid Luzula. Hereditas 51:344–374

    Article  Google Scholar 

  • Pazy B, Plitmann U (1994) Holocentric chromosome behavior in Cuscuta (Cuscutaceae). Plant Syst Evol 191:105–109

  • Prakken R (1959) Induced mutation. Euphytica 8:270–322

    Article  CAS  Google Scholar 

  • Putnam CD, Pennaneach V, Kolodner RD (2004) Chromosome healing through terminal deletions generated by de novo telomere additions in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:13262–13267

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

  • Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–216

  • Slijepcevic P, Bryant PE (1998) Chromosome healing, telomere capture and mechanisms of radiation-induced chromosome breakage. Int J Radiat Biol 73:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Plant J 34:283–291

  • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase-extendible and-nonextendible states. Cell 117:323–335

    Article  CAS  PubMed  Google Scholar 

  • Tempelaar MJ (1979) Fate of fragments and properties of translocations of holokinetic chromosomes after X-irradiation of mature sperm of Tetranychus urticae Koch (Acari, Tetranychidae). Mutat Res 63:301–316

  • Tsujimoto H (1993) Molecular cytological evidence for gradual telomere synthesis at the broken chromosome ends in wheat. J Plant Res 106:239–244

  • Tsujimoto H, Yamada T, Sasakuma T (1997) Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proc Natl Acad Sci U S A 94:3140–3144

  • Vanzela ALL, Colaço W (2002) Mitotic and meiotic behavior of γ irradiated holocentric chromosomes of Rhynchospora pubera (Cyperaceae). Acta Sci 24:611–614

  • Vanzela ALL, Cuadrado A, Guerra M (2003) Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet Mol Biol 26:199–201

  • Wanner G, Schröder-Reiter E, Ma W, Houben A, Schubert V (2015) The ultrastructure of mono and holocentric plant centromeres: An immunological investigation by electron and structured illumination microscopy. Chromosoma. doi:10.1007/s00412-015-0521-1

  • Yano O, Hoshino T (2006) Cytological studies of aneuploidy in Eleocharis kamtschatica (Cyperaceae). Cytologia 71:141–147

  • Yu G-L, Blackburn EH (1991) Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67:823–832

  • Záveská Drábková L (2013) A survey of karyological phenomena in the Juncaceae with emphasis on chromosome number variation and evolution. Bot Rev 79:401–446

  • Zedek F, Šmerda J, Šmarda P, Bureš P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10

  • Zheng YZ, Roseman RR, Carlson WR (1999) Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153:1435–1444

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ingo Schubert and all members of the Chromosome Structure & Function group for their fruitful discussions and to Katrin Kumke for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1384, HO 1779/17-1) and the IPK (Gatersleben). The work performed at the Masaryk University was supported by the Czech Science Foundation (13-06943S), project CEITEC (CZ.1.05/1.1.00/02.0068) of the European Regional Development Fund and project CZ.1.07/2.3.00./20.0189 co-financed from European Social Fund and the State Budget of the Czech Republic.

Conflicts of interest

No conflicts of interest exists.

Research involving human participants and/or animals

No research involving human participants or animals was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information Movie S1

Rotation animation of L. elegans non-irradiated mitotic metaphase chromosomes after immunostaining with anti-H2AThr120ph and FISH using the Arabidopsis-type telomere probe (See also Fig. 2a). Note, the centromere spans over the entire chromosome, from telomere to telomere (MPG 6493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jankowska, M., Fuchs, J., Klocke, E. et al. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124, 519–528 (2015). https://doi.org/10.1007/s00412-015-0524-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0524-y

Keywords

Navigation