Skip to main content

Advertisement

Log in

The Bucentaur (BCNT) protein family: a long-neglected class of essential proteins required for chromatin/chromosome organization and function

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The evolutionarily conserved Bucentaur (BCNT) protein superfamily was identified about two decades ago in bovines, but its biological role has long remained largely unknown. Sparse studies in the literature suggest that BCNT proteins perform important functions during development. Only recently, a functional analysis of the Drosophila BCNT ortholog, called YETI, has provided evidence that it is essential for proper fly development and plays roles in chromatin organization. Here, we introduce the BCNT proteins and comprehensively review data that contribute to clarify their function and mechanistic clues on how they may control development in multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam J, Yang M, Soga T, Pollard PJ (2013) Rare insights into cancer biology. Oncogene 33:2547–2556

    Article  PubMed  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  • Avvakumov N, Nourani A, Cote J (2011) Histone chaperones: modulators of chromatin marks. Mol Cell 41:502–514

    Article  CAS  PubMed  Google Scholar 

  • Baldi S, Becker PB (2013) The variant histone H2A.V of Drosophila—three roles, two guises. Chromosoma 122:245–258

    Article  CAS  PubMed  Google Scholar 

  • Bickmore WA, van der Maarel SM (2003) Perturbations of chromatin structure in human genetic disease: recent advances. Hum Mol Genet 2:207–213

    Article  Google Scholar 

  • Bustos-Valenzuela JC, Fujita A, Halcsik E, Granjeiro JM and Sogayar MC (2011) Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells. BMC Res Notes 4:370

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  • Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP (2001) Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21:875–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Codlin S, Marsellach-Castellv FX, Clement-Zizab M, Papadakisc M, Schmidtd A et al (2013) A systems approach linking genotype and environment to phenotype: oxidative stress response mechanisms in fission yeast EMBO Conference on Fission Yeast: pombe 7th International Fission Yeast Meeting

  • Corradini N, Rossi F, Verni F, Dimitri P (2003) FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements. Chromosoma 112:26–37

    Article  CAS  PubMed  Google Scholar 

  • Couthouis J, Hart MP, Erion R, King OD, Diaz Z et al (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21:2899–28911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dastidar RG, Hooda J, Shah A, Cao TM, Henke RM, Zhang L (2012) The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci 2:30. doi:10.1186/2045-3701-2-30.

  • Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105:10762–10767. doi:10.1073/pnas.0805139105

  • Diekwisch TG, Marches F, Williams A, Luan X (1999) Cloning, gene expression, and characterization of CP27, a novel gene in mouse embryogenesis. Gene 235:19–30

    Article  CAS  PubMed  Google Scholar 

  • Diekwisch TG, Luan X (2002) CP27 function is necessary for cell survival and differentiation during tooth morphogenesis in organ culture. Gene 287:141–147.

  • Diekwisch TG, Luan X, McIntosh JE (2002) CP27 localization in the dental lamina basement membrane and in the stellate reticulum of developing teeth. J Histochem Cytochem 50:583–586

    Article  CAS  PubMed  Google Scholar 

  • Dimitri P, Corradini N, Rossi F, Vernì F, Cenci G et al (2003) Vital genes in the heterochromatin of chromosomes 2 and 3 of Drosophila melanogaster. Genetica 117:209–215

    Article  CAS  PubMed  Google Scholar 

  • Fog CK, Galli GG, Lund AH (2012) PRDM proteins: important players in differentiation and disease. Bioessays 34:50–60

    Article  CAS  PubMed  Google Scholar 

  • Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC et al (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4:728–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gertow K, Sennblad B, Strawbridge RJ, Ohrvik J, Zabaneh D et al (2012) Identification of the BCAR1-CFDP1-TMEM170A locus as a determinant of carotid intima-media thickness and coronary artery disease risk. Circ Cardiovasc Genet 5:656–665

    Article  CAS  PubMed  Google Scholar 

  • Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641

    Article  CAS  PubMed  Google Scholar 

  • Harmacek L, Watkins-Chow DE, Chen J, Jones KL, Pavan WJ et al (2014) A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice. Dev Neurobiol 74:483–497

    Article  CAS  PubMed  Google Scholar 

  • Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL et al (2012) A census of human soluble protein complexes. Cell 150:1068–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inman GJ, Hill CS (2002) Stoichiometry of active smad-transcription factor complexes on DNA. J Biol Chem 277:51008–51016

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence, Nucleic Acids Res, 35, Web Server issue

  • Iwashita S, Osada N (2011) Bucentaur (Bcnt) gene family: gene duplication and tetrotransposon insertion, chapter 21 of Gene duplication, pp 383–400, Felix Friedberg (Ed.) InTech (Rijeka, Croatia) ISBN: 978-953-307-387-3, DOI:10.5772/22351. http://www.intechopen.com/books/gene-duplication/bucentaur-bcnt-gene-family-gene-duplication-and-retrotransposon-insertion

  • Iwashita S, Nobukuni T, Tanaka S, Kobayashi M, Iwanaga T et al (1999) Partial nuclear localization of a bovine phosphoprotein, BCNT, that includes a region derived from a LINE repetitive sequence in Ruminantia. Biochim Biophys Acta 1427:408–416

    Article  CAS  PubMed  Google Scholar 

  • Iwashita S, Osada N, Itoh T, Sezaki M, Oshima K et al (2003) A transposable element-mediated gene divergence that directly produces a novel type bovine Bcnt protein including the endonuclease domain of RTE-1. Mol Biol Evol 20:1556–1563

    Article  CAS  PubMed  Google Scholar 

  • Iwashita S, Nakashima K, Sasaki M, Osada N, Song S-Y (2009) Multiple duplication of the bucentaur gene family, which recruits the APE-like domain of retrotransposon: identification of a novel homolog and distinct cellular expression. Gene 435:88–95

    Article  CAS  PubMed  Google Scholar 

  • Iwashita S, Yasuda T, Suzuki T, Saotome A, Nakashima K et al (2013) Molecular heterogeneity of Bucentaur (Bcnt)/Cfdp1, a potential component of chromatin remodeling complex—isoforms and post-translational acetylation. 86th Annual meeting of Japanese Biochemical Society (Yokohama)

  • Iwashita S, Suzuki T, Nakashima K, Kobayashi T, Yasuda T et al (2014) Molecular basis for heterogeneity of phosphorylated Bcnt/Cfdp1, an evolutionarily conserved chromatin organization factor 87th Annual meeting of Japanese Biochemical Society (Kyoto)

  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin J, Jennings JL et al (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:E131

    Article  PubMed Central  PubMed  Google Scholar 

  • Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL et al (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087

    Article  CAS  PubMed  Google Scholar 

  • Leach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA et al (2013) Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21:176–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leach TJ, Mazzeo M, Chotkowski HL, Madigan JP, Wotring MG, Glaser RL (2000) Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem 275:23267--23272

  • Luk E, Vu ND, Patteson K, Mizuguchi G, Wu WH, Ranjan A, Backus J, Sen S, Lewis M, Bai Y, Wu C (2007) Mol Cell 25:357–368.

  • Makeyev AV, Bayarsaihan D (2011) Molecular basis of Williams-Beuren syndrome: TFII-I regulated targets involved in craniofacial development. Cleft Palate Craniofac J 48:109–116

  • March-Díaz R, Reyes JC (2009) The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant 2:565–577

    Article  PubMed  Google Scholar 

  • Messina G, Damia E, Fanti L, Atterrato MT, Celauro E et al (2014) Yeti, an essential Drosophila melanogaster gene, encodes a protein required for chromatin organization. J Cell Sci 127:2577–2588

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S et al (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348

    Article  CAS  PubMed  Google Scholar 

  • Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F (2010) The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS ONE 5:e12143

    Article  PubMed Central  PubMed  Google Scholar 

  • Moustakas A, Serhiy Souchelnytskyi S, Heldin C-H (2011) Smad regulation in TGF-β signal transduction. J Cell Sci 114:4359–4369

    Google Scholar 

  • Nobukuni T, Kobayashi M, Omori A, Ichinose S, Iwanaga T et al (1997) An Alu-linked repetitive sequence corresponding to 280 amino acids is expressed in a novel bovine protein, but not in its human homologue. J Biol Chem 272:2801–2807

    Article  CAS  PubMed  Google Scholar 

  • Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves FL, Wood L et al (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142:810–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    Article  CAS  PubMed  Google Scholar 

  • Riggi N, Stamenkovic I (2007) The biology of Ewing sarcoma. Cancer Lett 254:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Ryu H-W, Lee DH, Florens L, Swanson SK, Washburn MP et al (2014) Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. J Proteome 102:137–147

    Article  CAS  Google Scholar 

  • Sapountzi V, Logan IR, Robson CR (2006) Cellular functions of TIP60. Int J Biochem Cell Biol 38:1496–1509

    Article  CAS  PubMed  Google Scholar 

  • Tayal N, Choudhary P, Pandit SB, Sandhu KS (2014) Evolutionarily conserved and conformationally constrained short peptides might serve as DNA recognition elements in intrinsically disordered regions. Mol BioSyst 10:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Tea JS, Luo L (2011) The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Dev 6:5. doi:10.1186/1749-8104-6-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation Genome Biol (Suppl 1):S12

  • Thisse B, Thisse C (2004) Fast released clones: high-throughput expression analysis. ZFIN

  • van Attikum H, Gasser SM (2005) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765

    Article  PubMed  Google Scholar 

  • Wisniewski TP, Tanzi CL, Gindhart JG (2003) The Drosophila kinesin-I associated protein YETI binds both kinesin subunits. Biol Cell 95:595–602

    Article  CAS  PubMed  Google Scholar 

  • Wu W-H, Alami S, Luk E, Wu C-H, Sen S et al (2005) Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol 12:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Li J, Engleka KA, Zhou B, Lu MM et al (2008) Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. J Clin Invest 118:2076–2087

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu W-H, Wu C-H, Ladurner A, Mizuguchi G, Wei D et al (2009) N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complexes. J Biol Chem 284:6200–6207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R et al (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8:531–543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of PD laboratory was supported by grants from Istituto Pasteur-Fondazione Cenci-Bolognetti and Fondazione Roma - Terzo Settore. The authors thank Dr. Si-Young Song, Master Kentaro Nakashima, and Dr. Yoshiko Ohno-Iwashita for the helpful discussion, and for Professor Tomoyasu Inoue for advice in preparing Fig. 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Dimitri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, G., Celauro, E., Atterrato, M.T. et al. The Bucentaur (BCNT) protein family: a long-neglected class of essential proteins required for chromatin/chromosome organization and function. Chromosoma 124, 153–162 (2015). https://doi.org/10.1007/s00412-014-0503-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-014-0503-8

Keywords

Navigation